The Single Cell Sequencing Workflow: A practical guideline and valuable insights to ensure experimental success

Arpita Kulkarni, Ph.D.

Associate Director, Single Cell Core, Harvard Medical School

arpita_kulkarni@hms.harvard.edu

Single Cell Core at HMS Quad

We are here!

200 Longwood Ave., Armenise Room 517

https://singlecellcore.hms.harvard.edu

@HMS_SCC

Our Team



Mandovi Chatterjee, PhD Director

Arpita Kulkarni, PhD Associate Director

Theresa Torre Research Technician

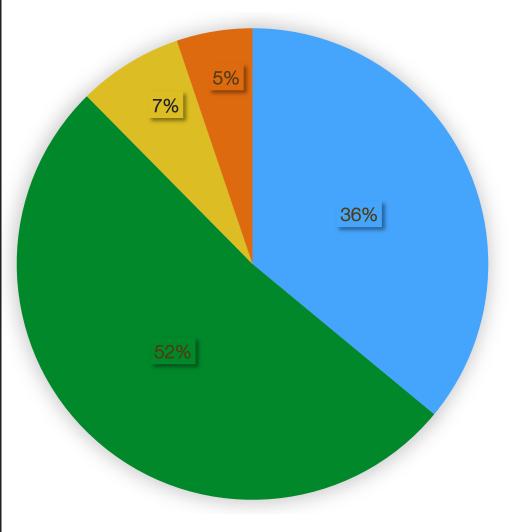
First name_Last name@hms.harvard.edu

Allon Klein, PhD Faculty Advisor

Single Cell Core at HMS Quad

Mission: Enable novel discoveries by assisting in the design, execution, and interpretation of single cell genomics assays using state-of-the-art tools

The Single Cell Core


We house different high-throughput platforms that allow encapsulation, barcoding, & library prep from single cells for single cell/ spatial transcriptomics and epigenomics

vizgen

- Harvard
- Harvard affiliates (BWH, MGH, DFCI, BIDMC, BCH, Joslin)
- Other non-Harvard non-profit
- Industry

- *
- Stereo-seq and DBiTSeq (AtlasXenomics)
- *****
- *

Key Services

Consultation

Single Cell mRNA barcoding

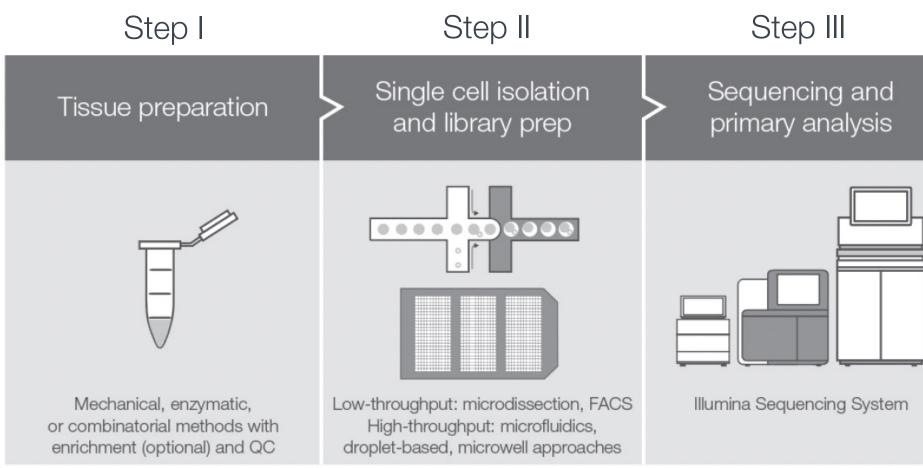
- inDrops (sunset FY2024)
 - 10x Genomics •
 - **BD** Rhapsody
- Parse Biosciences (SPLiT-seq) •
- Fluent Biosciences (PIP-seq) ٠

Applications

Library Preparation (scRNA-seq for 3' and 5', scATAC-seq, Multiome, CITE-seq, Hashtagging, MULTI-seq, CellPlex) Sequencing Coordination •

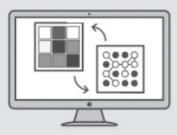
NEW Single cell spatial transcriptomics & epigenomics

- Visium (10x Genomics)
 - MERFISH (Vizgen) •


NEW Long read seq lib preps for PacBio & Nanopore

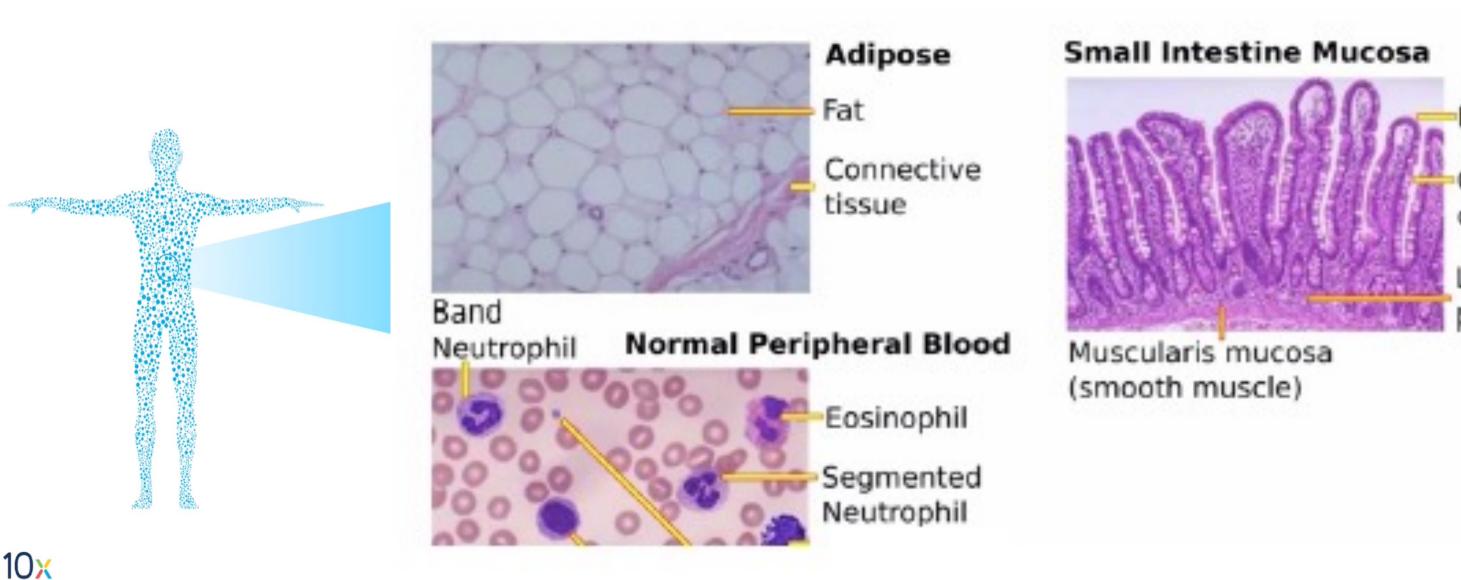
Teaching HSPH Chan Bioinformatics Core

Outline for today's talk


scRNAseq vs bulk (which one to use when?)

• scRNAseq workflow -

Step IV


Data visualization and interpretation

Multiple commercial and freeware secondary and tertiary analysis packages available

We know tissues are heterogeneous

GENOMICS

© 10X GENOMICS, INC. 2020 | FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

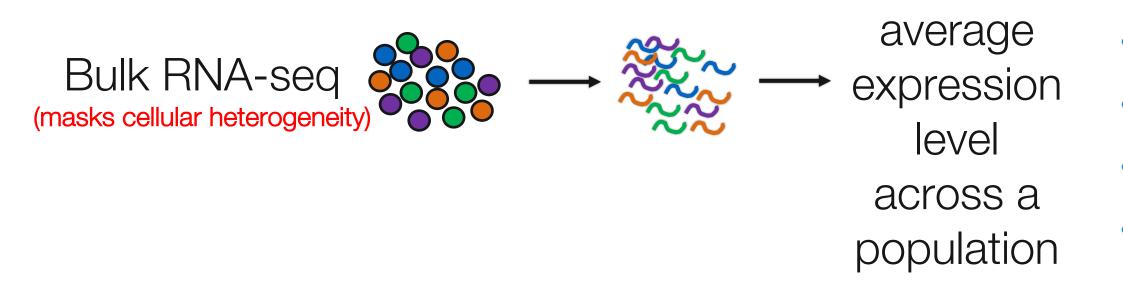
Epithelial cells

Goblet cells

Lamina propria

Bulk RNA Sequencing (est. ~2000s)

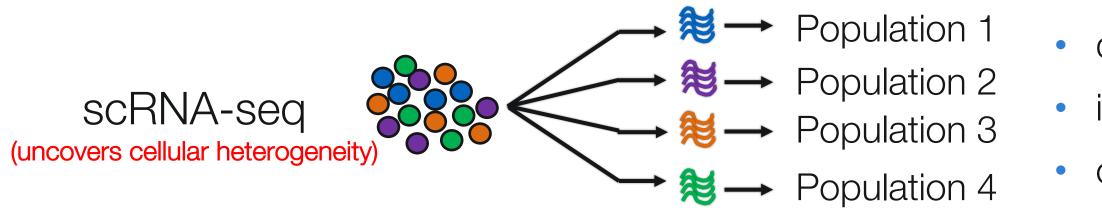
Bulk RNAseq


mRNA-only libraries (polyA)

Whole transcriptome libraries (all RNA species except rRNA)

- comparative transcriptomics
- disease biomarker
- homogenous systems
- Great for studying broad level differences

Bulk RNA Sequencing (est. ~2000s)


Sometimes averages are not useful!

"Say you are standing with one foot in the oven, and the other foot in an ice bucket. According to the percentage people, you should be perfectly comfortable" Bobby Bragan

- comparative transcriptomics
- disease biomarker
- homogenous systems
- Great for studying broad level differences

Single Cell RNA Sequencing

Captures cell to cell variation in gene expression

scRNAseq \rightarrow mRNA-only libraries (polyA) Single cell platforms not good at capturing RNA species other than mRNA!

The main difference between bulk and scRNA-seq is that in the latter each sequencing library represents a single cell, instead of a population of cells

- define heterogeneity
- identify rare cell population(s)
- cell population dynamics

Single cell vs Bulk RNA Sequencing: not an either/or situation

BULK VS SINGLE CELL RNA-SEQ

Average expression level

- Comparative transcriptomics
- Disease biomarker
- Homogenous systems

CAMBRIDGE INSTITUTE

RNA-Seq

scRNA-Seq

Separate populations

- Define heterogeneity
- Identify rare cell
- populations
- Cell population
- dynamics

Which technique to use when?

RNA-Seq

Does your biological Q need scRNAseq?

Average expression level

- Comparative transcriptomics
- Disease biomarker
- Homogenous systems

CAMBRIDGE INSTITUTE

scRNA-Seq

Separate populations

- Define heterogeneity
- Identify rare cell
- populations
- Cell population
- dynamics

Data Quality - Transcriptome Coverage (mRNA)

"Bulk RNAseq"

mRNA: TruSeq RNA-Seq (gold standard)

- Higher starting RNA material (500ng-)
- >~20,000 transcripts per cell
 - More when consider splice variants / isoforms
- Capture >80-95% of transcriptome depending

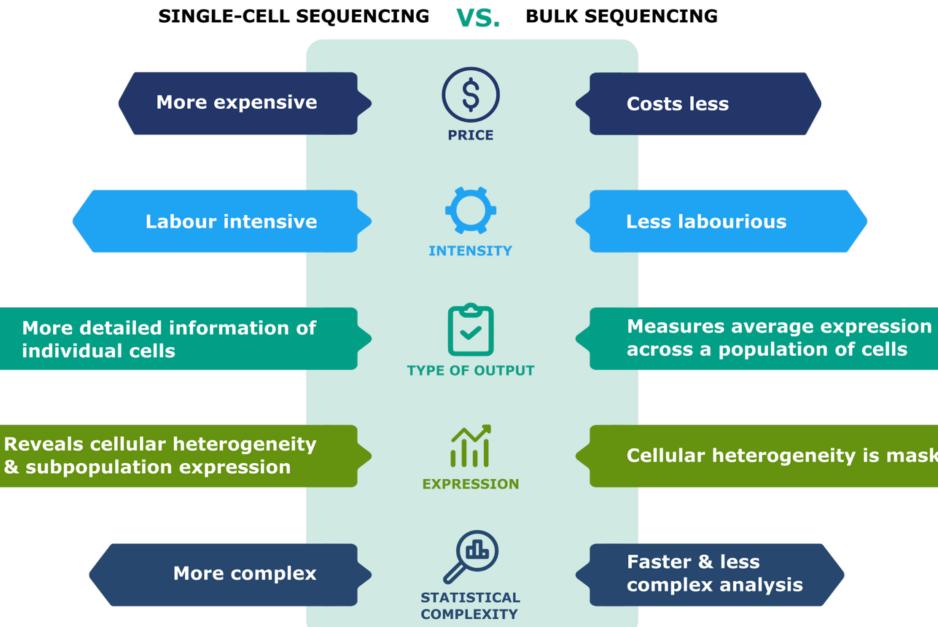
on sequencing depth

Data Quality - Transcriptome Coverage (mRNA)

"Bulk RNAseq"

mRNA: TruSeq RNA-Seq (gold standard)

- Higher starting RNA material (500ng-)
- >~20,000 transcripts per cell
 - More when consider splice variants / isoforms •
- Capture >80-95% of transcriptome depending


on sequencing depth

"Single Cell Methods"

- Lower starting RNA (noisier gene expression) $10^3 - 10^6$ cells
- 200 -10,000 transcripts per cell
- Capture <10-40% of the transcriptome
- less reads/cell \rightarrow many transcripts (80-90%) will show up with zero counts in every
- cell (eg. GAPDH, ACTB)

scRNAseq can be very powerful but you want to be sure that it is the best method for your Q

Single cell vs Bulk RNA Sequencing: The face-off

Cellular heterogeneity is masked

Common Applications of scRNA-seq

a) "cell atlas"-type studies - Heterogeneous populations b) "timeseries"-type studies - Snapshots in biol. process

Uncover cellular heterogeneity

e.g. mouse brain atlas, Tumor environment etc Bio. trajectories, Dev timelines, lineage tracing

e.g. embryogenesis

c) "screening"-type studies Single cells as individual expt.

Uncover GEX diff on purturbation

e.g. CRISPR studies

"-omics" one can study at single cell level

Single cell

- Transcriptomics
- Epigenomics
- Genomics
- Proteomics
- **Metabolomics**
- **Microbiomics**
- Lipidomics
- Glycomics
- **Multiomics**

Each "-omics" produces large data

BUT Integrating big data from multi "-omics" presents a considerable statistical challenge

Spatial transcriptomics at (sub)cellular res

High resolution spatial profiling of scRNA expression in their native context

• All methods are in their infancy –

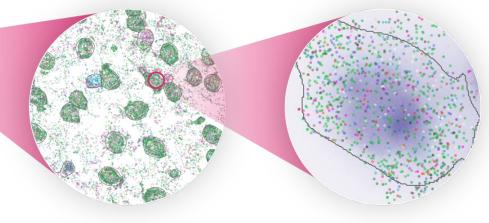
Sequencing or Imaging based

• Require fresh-frozen tissue sections

Examples:

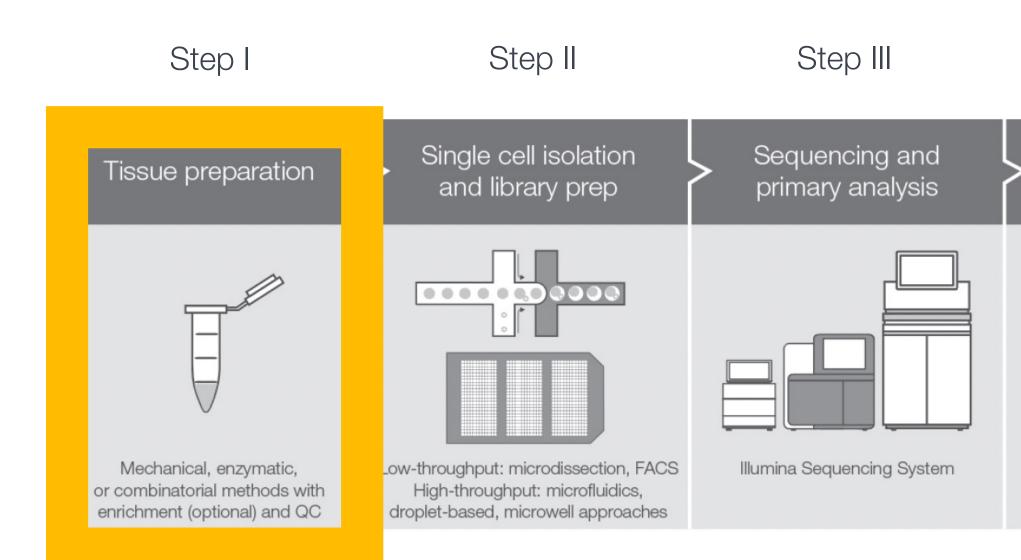
10x's Visium (50-100 μ m resolution), Xenium

Vizgen's MERSCOPE


Nanostring's GeoMx, CosMx

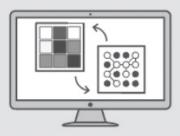
vizgen

MERFISH • Multiplexed Error Robust Fluorescence In-Situ Hybridization Profiling 483 genes with subcellular resolution across a full mouse coronal slice


SCC offers spatial services

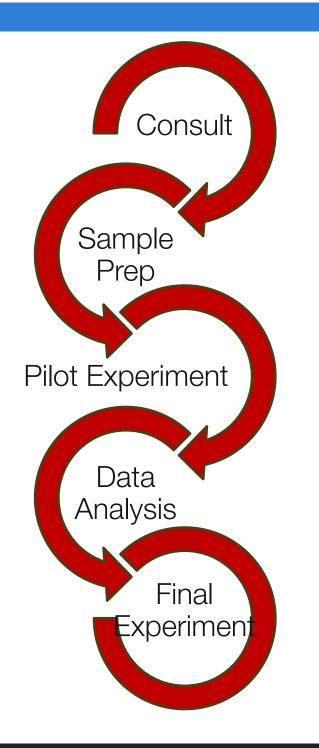
WIDE FIELD OF VIEW

SUB-CELLULAR


Single Cell Sequencing Workflow – STEP I

Goal: Get high quality, viable, single cell suspension from tissue

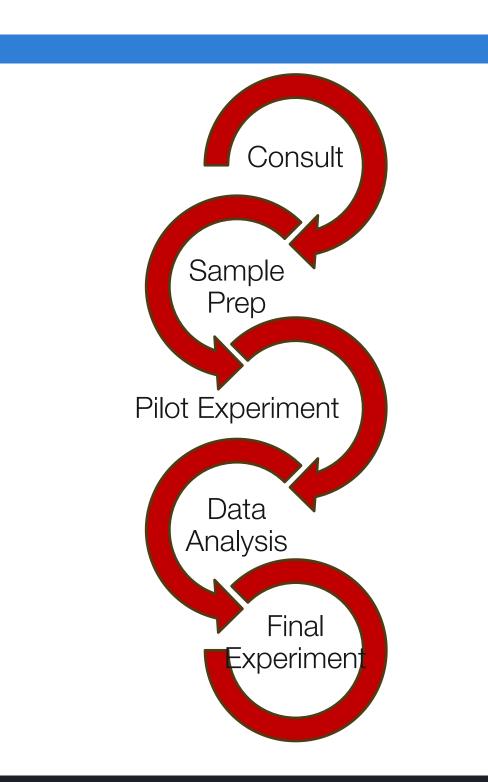
Step IV


Data visualization and interpretation

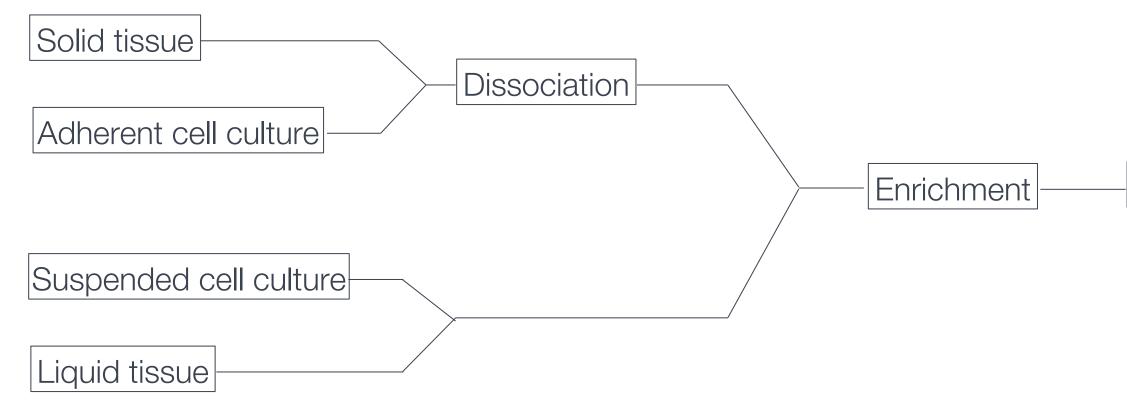
Multiple commercial and freeware secondary and tertiary analysis packages available

STEP I – Pilot experiment planning

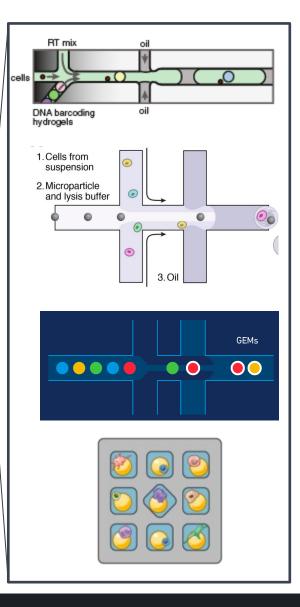
- Do not rush to the final experiment
- A well-planned pilot experiment is essential for
- coming up w/ well defined bio. objectives
- ✓ rational expt design/optimal approach for research Q
- evaluating sample preparation
- figuring our the required number of cells needed to answer your biological question
- Good sample prep is the key to success


STEP I – Pilot experiment planning

What causes technical noise in single cell expts?


"Technical Noise": When non-biological, technical factors cause changes in the data produced by the expt. leading to wrong conclusions

2 kinds of technical noise -


- Variance resulting from experimental designs and handling (e.g. different handling personnel, reagent lots, PCR amp cycles, equipment, protocols etc) -> "Batch effect correction"
- Variance resulting from sequencing (e.g. library prep, GC content, amp bias etc) -> "Normalization"

- What is your sample of interest? How would you obtain that?
 - Which population in a tissue should be examined?
 - What is the abundance of tissue? Does it require enrichment? lacksquare

Key considerations for the preparation of a high quality, viable, single-cell suspension

Dissociation

Table 1: Tissue dissociation protocols

Method	Description
Mechanical	Tissue is mechanically sheared and disrupted through cutting, dicing, pipetting, etc
Enzymatic	Tissues are incubated with various enzymes such as collagenase, trypsin, dispase, elastase, etc to cleave protein bonds
Combinatorial	Mechanical and enzymatic methods can be performed sequentially or simultaneously, with the aid of automated systems, for more extensive dissociation

Dissociation protocol must be standardized for every tissue – no universal protocol

Example protocol/provider

Isolation of various hematopoietic lineages from bone marrow, spleen, or lymph nodes

Worthington Biochemical Corporation

Miltenyi gentleMACS

Key considerations for the preparation of a high quality, viable, single-cell suspension

Enrichment (optional but often critical step)

Table 2: Enrichment methods

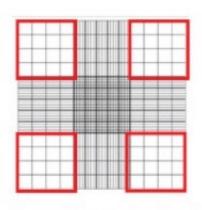
Method	Description	Available protocol/provider
Centrifugation	Cell populations of interest are enriched based on size, shape, or density by centrifugation through a density gradient medium	Sigma-Aldrich
Bead-based enrichment	Cell populations of interest (including live cells) are enriched by positive/negative selection with magnetic bead-conjugated antibodies	Miltenyi Biotec
FACS	Cell populations of interest (including live cells) are enriched by positive/negative selection with fluorophores/fluorochrome-conjugated antibodies	Beckman Coulter Becton Dickinson BioLegend Bio-Rad

Key considerations for the preparation of a high quality, viable, single-cell suspension

Enrichment

Table 3: Reagents for separating live and dead cells

Reagent	Mechanism	Pros
Classic DNA dyes	Membrane impermeant dyes (eg, PI, 7-AAD) that bind DNA will be excluded by live cells	Inexpensive, easy to use
Amine dyes	Membrane impermeant dyes that bind amine groups of proteins will be excluded by live cells	Compatible with intracellular staining, wide selection of dyes available
Vital dyes	Membrane permeable dye that becomes fluorescent only when cleaved by metabolically active (live) cells	Inexpensive, easy to use


The method chosen is driven by various factors

	Cons
	Not compatible with intracellular staining
r	More expensive than other dyes, labeling must be done in absence of free protein
	Challenging to use with intracellular staining

Tissue Preparation: cell numbers

- High thruput platforms need a 10,000-25,000 cell minimum
 - 100-1000 cells per ul = 100,000-1,000,000 cells per ml
- Count cells by hemocytometer do not trust sorter counts
 - counts from the sorter are often $<\frac{1}{2}$ of actual cell counts
 - Automated cell counters can also give faulty counts

Types of Stains: Acridine orange (marks live cells green)/ Propidium iodide (marks dead cells red), Trypan Blue (marks dead cells blue)

Tissue Preparation: viability checks

- Check viability of sample over 30-90 mins on ice (90-95% viability)
 - If viability decreases over a short period of time this will be reflected in transcriptional data
 - Will see high mitochondrial read counts
- Number of dead cells \propto number of wasted sequencing reads \propto wasted \$\$\$
 - If 30% of your cells are dead at the time of encapsulation then at most you will be able to use 70% of your sequencing data

Check single cell suspension supernatant for the presence of "ambient RNA" or freefloating RNA (Ribogreen binds RNA in sol to produce green florescence)

Creates background noise in all samples and complicates analysis

Tissue Preparation: increasing cell viability

- Mild dissociation reagent (TrypLE, StemPro, Accutase, Liberase)
- Shorten dissociation time, reduce dissociation temp
- Adding a DNAse step can help reduce clumping of dead cells.
- Using ROCK inhibitor/ apoptosis inhibitor (esp. epithelial cells)
- Avoid harsh handling: cell pelleting, centrifugation, pipetting etc.
- Avoid FACS sorting on fragile cell types (try MACS instead)
- Using correct media: PBS w/ 0.1-1% BSA, 2% FBS in defined media make sure final buffer does **not** contain calcium, EDTA, or heparin (inhibit RT)

Tissue Preparation: increasing cell viability

- Mild dissociation reagent (TrypLE, StemPro CTCE se, Litempt entire protocol)
 Shorten dissociation time, reduce CCE PRACE vou attempt, entire protocol time you attempt, entire protocol time you attempt, entire protocol in the adding a DNAse step CTCE PRACE where the first time you attempt, entire protocol is a DNAse step CTCE PRACE of the first time you attempt, entire protocol is a DNAse step CTCE PRACE of the first time you attempt, entire protocol is a DNAse step CTCE Preduce the first time you attempt, entire protocol is a DNAse step CTCE Preduce the first time you attempt, entire protocol is a DNAse step CTCE Preduce the first time you attempt, entire protocol is a DNAse step CTCE Preduce the first time you attempt, entire protocol is a DNAse step CTCE Preduce the first time you attempt, entire protocol is a DNAse step CTCE Preduce the first time you attempt, entire protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE Preduce the first time you attempt to protocol is a DNAse step CTCE preduce the first time you attempt to protocol is a DNAse step CTCE proto sure final buffer does **not** contain calcium, EDTA, or heparin (inhibit RT)

Tissue Preparation – Quality control (QC)

Visual Inspection

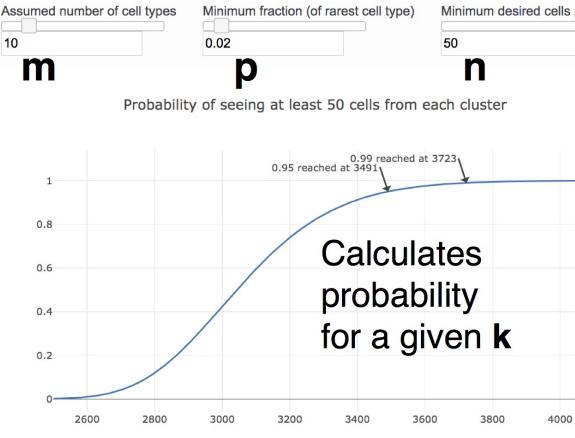
Debris, cell duplets, cell aggregates X

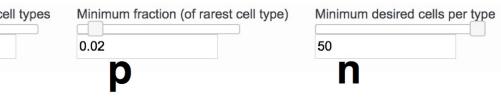
Use of flow cytometry to assess multiple metrics simultaneously (viability, size distribution, cell concentration)

< 10% doublets

Tissue Preparation: How many cells to barcode

How many cells should I barcode or sequence?


- How many high-quality, viable cells do I get from my tissue?
- What is the biological Q? What is the % of the smallest sub-population of interest?


(A minimum of 50-100 cells w/ unique transcriptomic signature needed to form distinct clusters in tSNE/Umap plots)

Do I need more cells or more sequencing depth?

(More the rare subtypes present, more cells need to be profiled and sequenced)

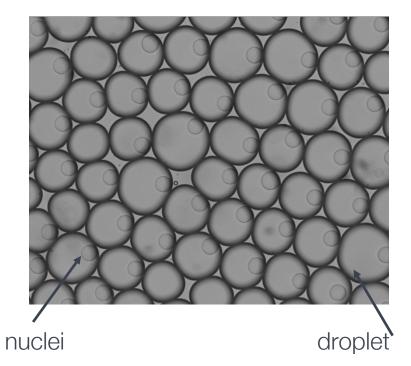
More you sequence, the higher the cost of your experiment!

Number of cells sampled

Tissue Preparation: cryopreservation

- Several sc-papers have come out using various cryopreservation techniques on samples
- Success of cryopreservation is dependent on the sample type (e.g. blood and immune cells do great!)
- Cell viability upon thaw is key to success

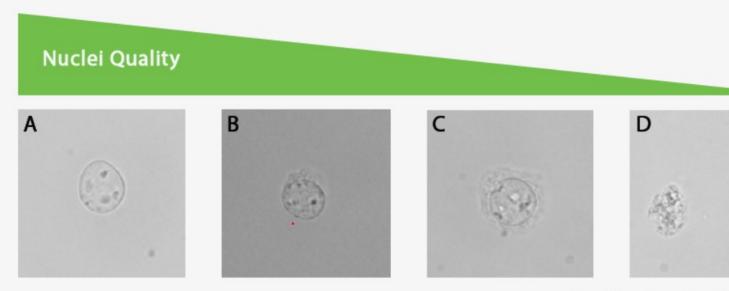
The quality of the tissue at the time of freezing is a major factor in the quality of data downstream


Disadv: you don't know ahead of time if one of your cell types in more sensitive to thawing/death at rehydration, meaning you could heavily bias your sc data if you are not careful!

Use Std growth media+FBS/DMSO for best results

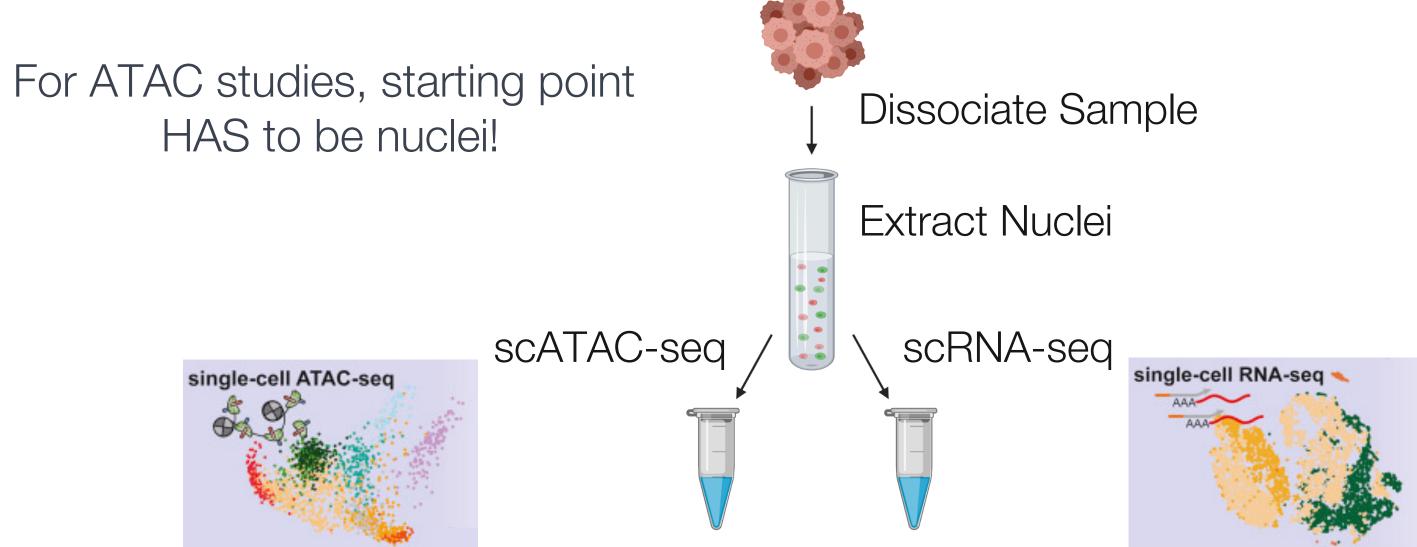
Tissue Preparation: single nuclei RNA-seq (snRNAseq)

- Extract nuclei from sample of interest
- Removes transcriptional noise from dead/dying cells
- snRNAseq most often used for
- ✓ difficult to isolate/dissociate samples e.g. neuronal samples
- Iow viability samples e.g. good for flash frozen clinical samples
- \checkmark tissues problematic for sc-processing e.g. adipose tissue, where fat inhibits RT enz in whole cell scRNAseq expt, or pancreatic tissue (high in RNAses)
- Cell types hard to get from single cell preparations
- Data from scRNAseg is comparable to data from snRNAseg
- ✓ Analysis for snRNAseg different due to presence of introns and non-coding RNA



Tissue Preparation: single nuclei RNA-seq

- Good single nuclei suspension. No clumps and minimal debris
- Nuclear membrane integrity is required until cells are encapsulated


A: High-quality nuclei have well-resolved edges. Optimal quality for single cell ATAC libraries. B: Mostly intact nuclei with minor evidence of blebbing. Quality single cell ATAC libraries can still be produced. C: Nuclei with strong evidence of blebbing. Proceed at your own risk.

D: Nuclei are no longer intact. Do not proceed!

https://support.10xgenomics.com/single-cell-atac/sample-prep/doc/demonstrated-protocol-nuclei-isolation-for-single-cell-atac-sequencing

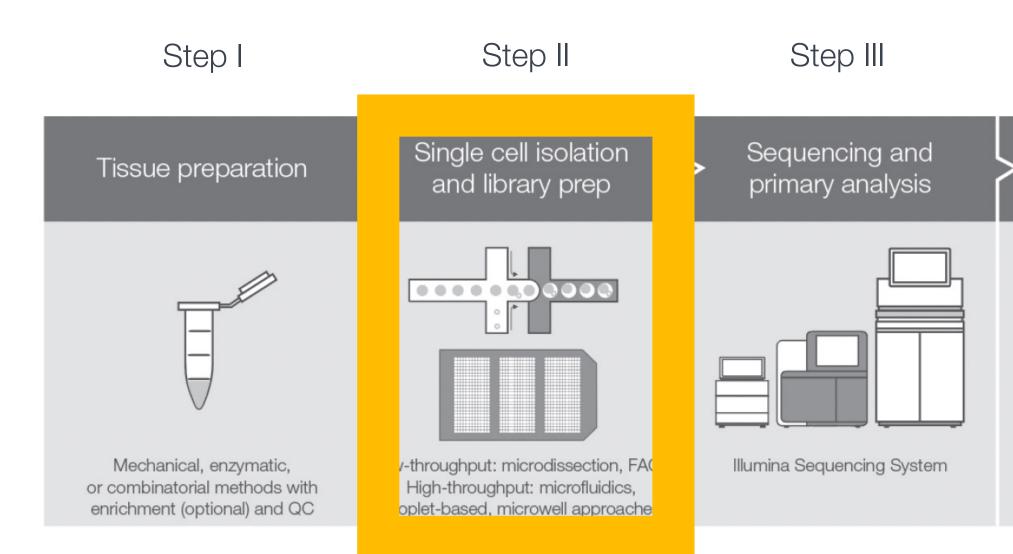
Tissue Preparation: single nuclei RNA-seq

JD Buenrostro et al. Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation Cell. 2018 May 31;173(6):1535-1548.e16. doi: 10.1016/j.cell.2018.03.074.

Summary: Best practices to get high quality sample

- Optimize a dissociation protocol that is best-suited for you no universal protocol for all tissue types!
- Short sample prep time w/ gentle treatments
 - gentle lysis condition (low temp, short time)
 - short FACS time, slow sorting, bigger nozzle (in certain cases)
 - Gentle centrifugation (300-500xg) and resuspension
 - Removing debris by filter or density medium
- Include BSA (up to 1%) or FBS (up to 2%) in final sc-suspension buffer (remove reagents that inhibit RT enz)
- Include biological replicates
- Perform drug/treatment/model vs control on the same day and randomize the order of samples run on different days
- Library prep is the largest source of batch effect collect all samples from 1 study together then prep as library

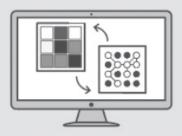
Single Cell Core's diverse sample repertoire!


All major phyla, >50,000 samples

Representative examples

Platyhelminthes (flatworms) Arthropoda (insects, crustaceans) Mollusca (squids) Echinodermata (starfish, brittle stars) Fish (zebrafish) Amphibians (salamanders) Aves (chick) Mammals (human, monkey, mice, rat)

Different Cell lines (human, mice) & cell types Organoids (skin, brain, lung, gut)


Single Cell Sequencing Workflow – STEP II

Goal: Capture and isolate single cells, prep libraries

Step IV

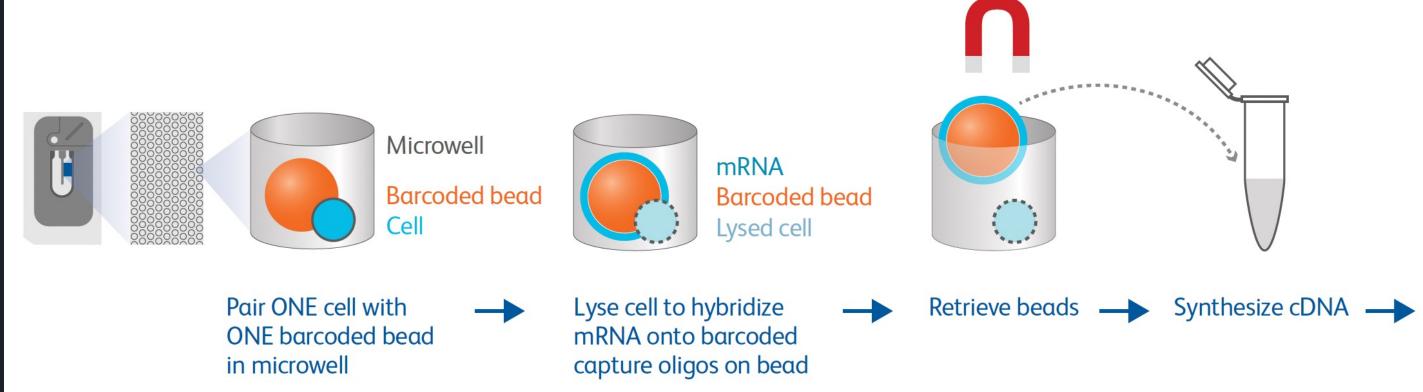
Data visualization and interpretation

Multiple commercial and freeware secondary and tertiary analysis packages available

STEP II – single cell isolation methods and platforms

Table 4: Low-throughput single-cell isolation approaches				
Method	Description	Advantages	Disadvantages	Commercial offering/ Example methods
Serial dilution	Serial dilution of cell suspension down to one cell per well	Simple approach; does not require specialized equipment	Time-consuming, probability of isolating multiple cells	Corning Serial Dilution Protocol
Mouth pipetting	Isolation of single cells with glass pipettes	Simple approach	Technically difficult, random	N/A
Robotic micromanipulation	Isolation of single cells with robotic micropipettes	Positional placement of cells	Requires specialized equipment	An automated system for high- throughput single cell-based breeding. Single cell deposition and patterning with a robotic system.
Laser capture microdissection	Dissection of single cells from tissue sections using a laser	Spatial context is preserved	Technically challenging, potential UV damage to DNA/RNA	Laser capture microdissection of single cells from complex tissues.
FACS	Isolation of microdroplets containing single cells using electric charge	Accurate selection of cell types by size, morphology, internal complexity, and protein expression by antibody labeling	Requires expensive, specialized equipment, cells exposed to high pressure	Beckman Coulter Becton Dickinson Bio-Rad

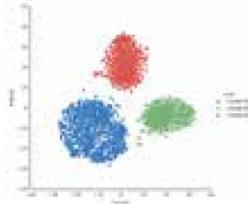
Cost effective but sample/cell number prohibitive


STEP II – single cell isolation methods and platforms

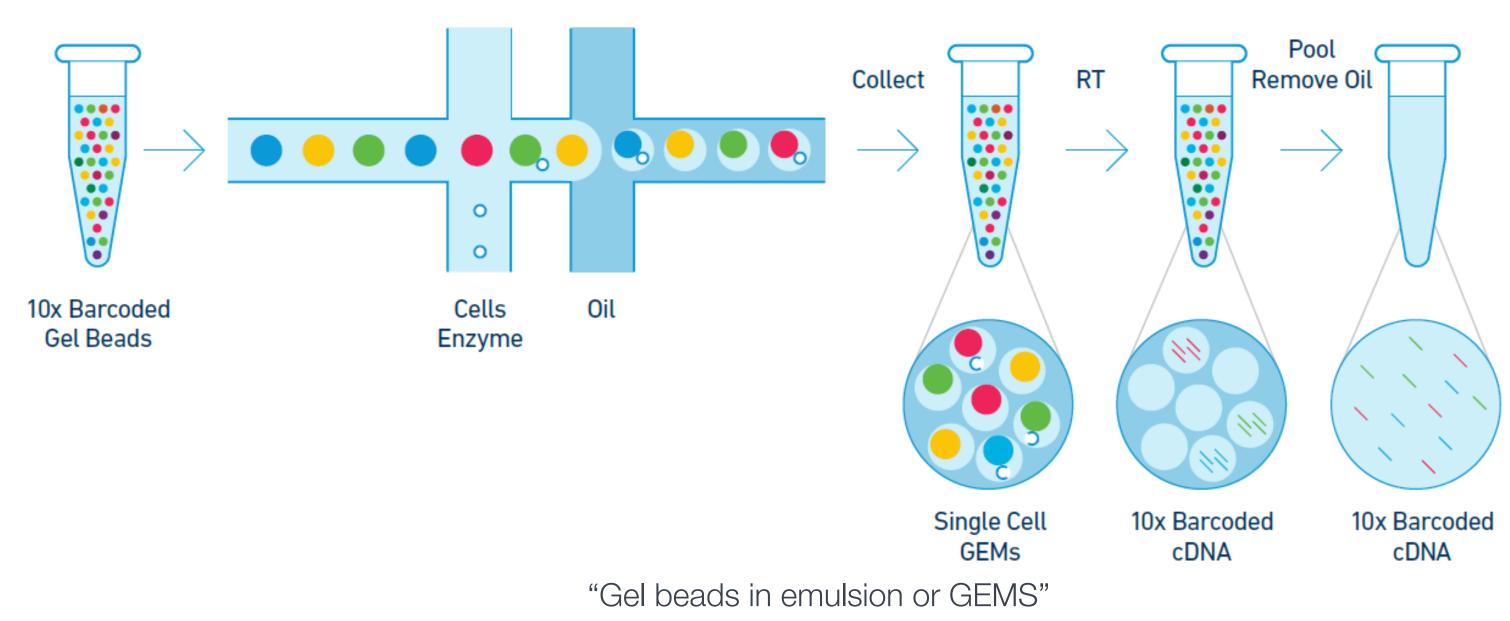
Method	Description	Advantages	Disadvantages	Commercial offering/ Example methods
Droplet fluidics platforms ⁸⁻¹¹	Compartmentalization of individual cells in droplets using a microfluidics device followed by lysis and capture of target DNA/RNA	Unique molecular identifiers (UMIs) and cell barcodes enable cell and gene-specific identification, low cost per cell, wide menu of commercial applications	Requires specialized equipment, can be technically challenging	1CellBio inDrop System 10X Genomics Chromium Controller Bio-Rad ddSEQ Single-Cell Isolator Instrument Dolomite Bio Nadia Instrument Mission Bio Tapestri Platform
Microwells 12,13	Capture of individual cells in microwells of fabricated arrays	Supports imaging and short-term culture of cells, ideal for adherent cells, UMIs enable cell and gene- specific identification	Requires specialized equipment, can be technically challenging	BD Rhapsody Single- Cell Analysis System CellMicrosystems CellRaft AIR System Bio-Rad Celsee Genesis System Takara ICELL 8 cx Single-Cell System

		0
owells	Capture of individual cells in	C
	microwells of fabricated arrays	C

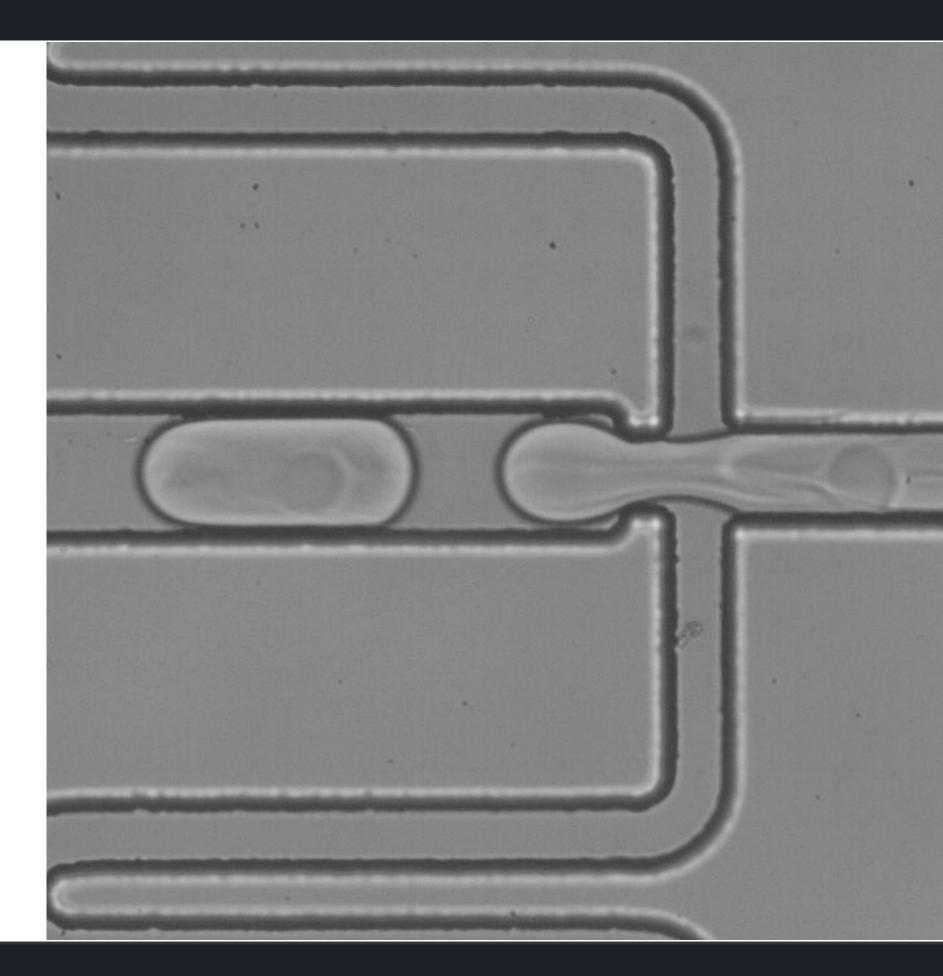
The method chosen will determine lib prep, sequencing and downstream analysis


Microwell based: BD Rhapsody overview

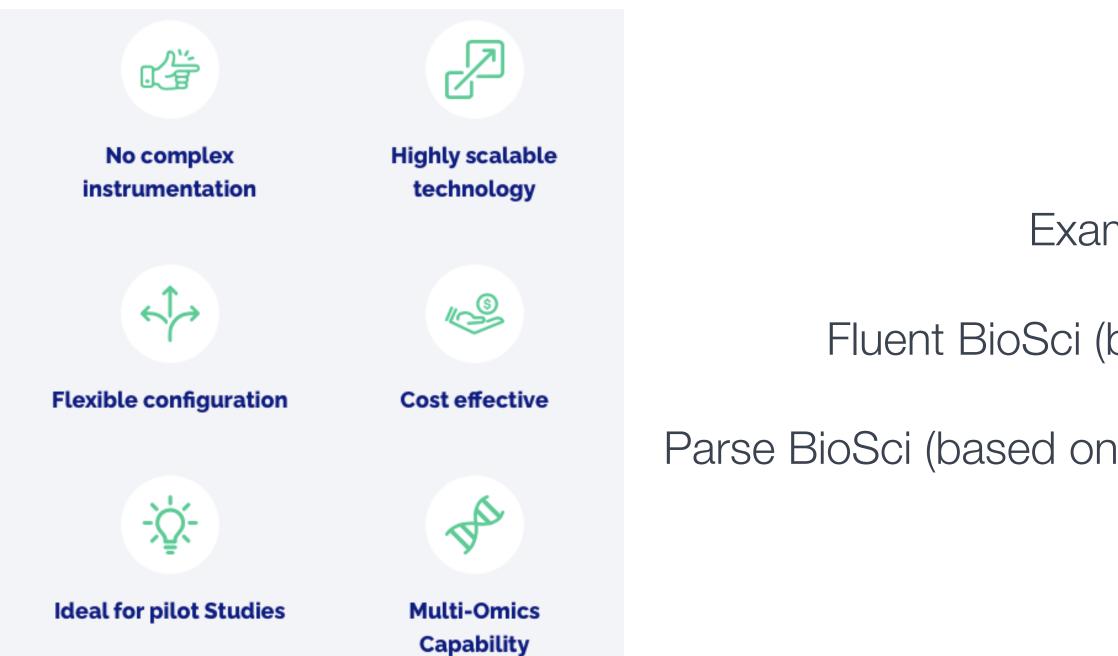
Barcoded beads w/ mRNA can be stored long-term, so sample not lost



Sequence and construct single cell gene expression profiles


Droplet based: 10x Genomics overview

Droplet based:


Video generated by Single Cell Core @ HMS

There are many Single Cell Platforms

	inDrops	10x Genomics	Drop-seq	Seq-well (Honeycomb)	SMART-seq	
Cell capture efficiency	~70-80%	~50-70%	~10%	~80%	~80%	
Time to capture 10k cells	~30min	10min	1-2 hours	5-10min		
Encapsulation type	Droplet	Droplet	Droplet	Nanolitre well	Plate-based	
Library prep	CEL-seq Linear amplification by IVT	SMART-seq Exponential PCR based amplification	SMART-seq Exponential PCR based amplification	SMART-seqSMART-seqExponential PCR based amplificationExponential PCR based amplification		
Commercial	Yes	Yes		Yes (Summer 2020)	Yes	
Cost (~\$ per cell)	~0.06	~0.2	~0.06	~0.15	1	
Strengths	 Good cell capture Cost-effective Real-time monitoring Customizable 	 Good cell capture Fast and easy to run Parallel sample collection High gene / cell counts 	Cost-effectiveCustomizable	 Good cell capture Cost-effective Real-time monitoring Customizable 	 Good cell capture Good mRNA capture Full-length transcript No UMI 	
Weaknesses	Difficult to run	Expensive	Difficult to run & low cell capture efficiency	Available Soon	Expensive	

C. Ziegenhain et al., Comparative Analysis of Single-Cell RNA Sequencing Methods, Molecular Cell 2017 (doi: 10.1016/j.molcel.2017.01.023)

Instrument-free Single Cell Platforms

Examples -

Fluent BioSci (based on PIPseq)

Parse BioSci (based on combinatorial barcoding)

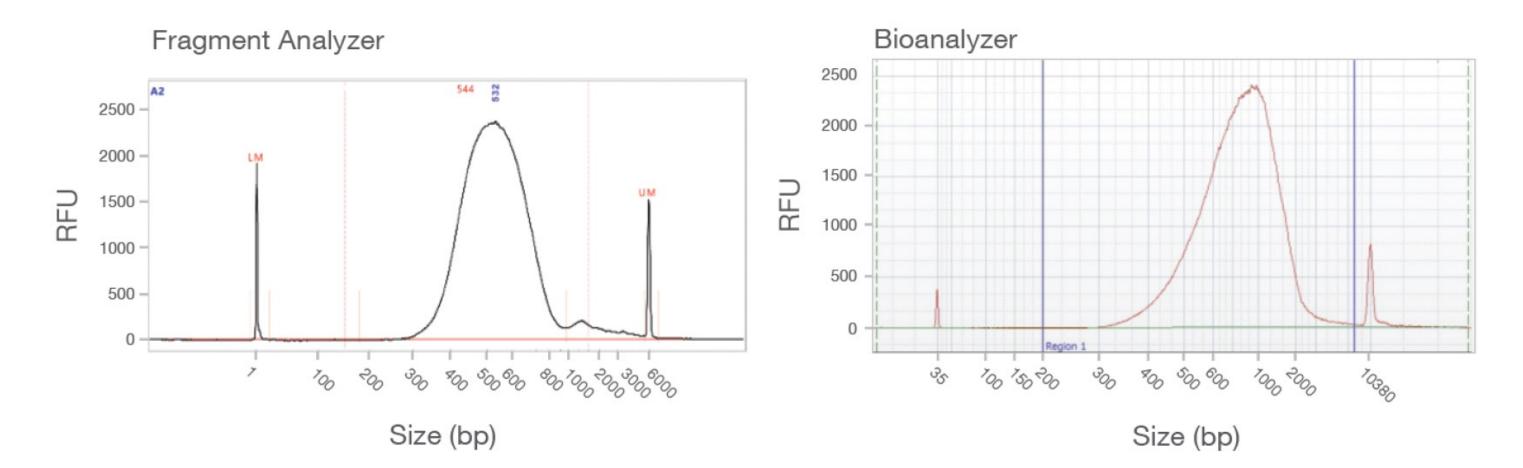
STEP II: Library prep

Types of information from single cell sequencing –

- Transcriptome Full length RNAseq (SMARTseq), 3' or 5' mRNA gene expression libraries, Targeted panels or Immune-repertoire V(D)J (T-cell/B-cell receptors)
- Genome MALBAC, DOP-PCR (whole genome amp from sc) Targeted panels
 - Epigenome ATACseq
 - Protein capture CITEseq

Parallel assays to add layered info to scRNAseq data

Multiple libraries from same sample for multimodal sc-analysis


Representative examples:

- scRNAseq (3' or 5' gene expression) + scATACseq (epigenome)
- scRNAseq (3' or 5' gene expression) + CITEseq (surface proteins)
- scRNAseq (3' or 5' gene expression) + cell hashing (surface proteins)

More informative data at same or lower cost! But expt has to be designed at the beginning for multimodal analysis

STEP II: sc-isolation methods and library prep

Quality control

Sensitive quantification, size measurements of fragments, detection of possible contaminants

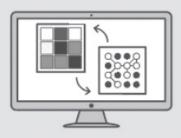
STEP II: sc-isolation methods and library prep

Summary –

- Choose a platform compatible w/ your tissue's biology
- Common platforms 10x Genomics, inDrops, BD Rhapsody

Note: Not recommended to switch platforms midway through your experiment!

- Library prep transcriptome, genome, epigenome, or protein capture
- Consider parallel assays to capture maximum info from sc-data at lower costs
- Once high quality lib prepped, proceed w/ sequencing
- Protocol resources protocols.io, 10x sample prep resources


Single Cell Sequencing Workflow – STEP III

Goal: sequence your sc-lib using a compatible NGS platform

Step IV

Data visualization and interpretation

Multiple commercial and freeware secondary and tertiary analysis packages available

STEP III: Isomolar library pooling for sequencing

Submitting isomolar libraries for sequencing (equal pooling) illumina

Pooling Calculator

Library Plexity	(
Unit of Measure for Library	o nM
	⊖ ng/µl
Pooled Library Concentration (nM)	(
Total Pooled Library Volume (µl)	150 🗘
Description (optional)	

Library Concentration (nM)	Library Volume (µl)	10 mM Tris-HCl, pH 8.5 (μl)

Total Pool Volume

Calculate

Pooling Volume (µl)

STEP III: Sequencing platforms for scRNAseq

Common compatible sequencing systems -

More power/output Simple benchtop Affordable

Advantages	Power of high-throughput sequencing with the simplicity and affordability of a benchtop system
Ideal for	Mid- to high-throughput sequencing applications and average scale single-cell sequencing studies, such as studies to profile cell function in both development and disease.

NovaSeq 6000 System

Unprecedented output and throughput

Extensive screening studies, such as pharmaceutical screens and cell atlas studies.

STEP III: Considerations for successful sequencing run

Experimental planning - Read depth or 'coverage'

Table 8: Recommended reads for different single-cell sequencing applications

Method	Recommended no. o
3' gene expression	15K–50K reads per ce
5' gene expression	50K reads per cell
Antibody sequencing	100 reads per antibody
scATAC-Seq	50K reads per nuclei
5' TCR/BCR	5K reads per cell
Takara SMARTer	1M-2M reads per cell

The recommended number of reads is based upon manufacturer recommendations

Sequencing depth dependent on sample type and experimental objective

of reads^a

ell

dy/cell

(>300,000 reads per cell)

STEP III: Considerations for successful sequencing run

Experimental planning - Read depth or 'coverage'

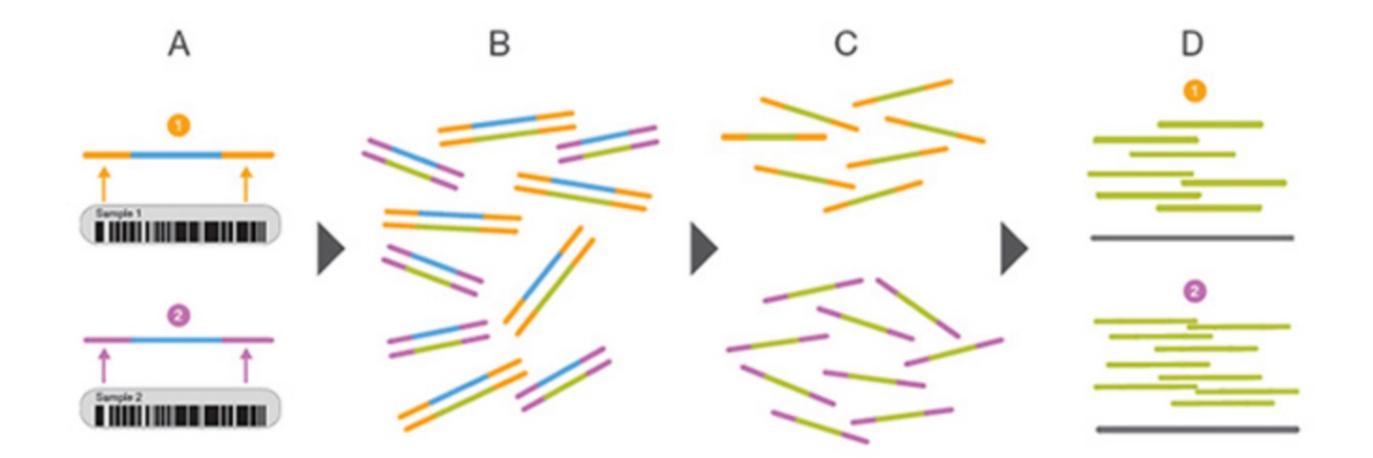
Example: You have barcoded 10K cells from 4 samples = 40K barcoded cells $40K \times 20,000$ reads/cell = 800M reads total

NovaSeq 6000 System

Flow Cell Type	SP	S1	S2	S4
Single-end Reads	650–800 M	1.3–1.6 B	3.3 B-4.1 B	8-10 B
Paired-end Reads	1.3–1.6 B	2.6-3.2 B	6.6–8.2 B	16–20 B

Sequencing jargon

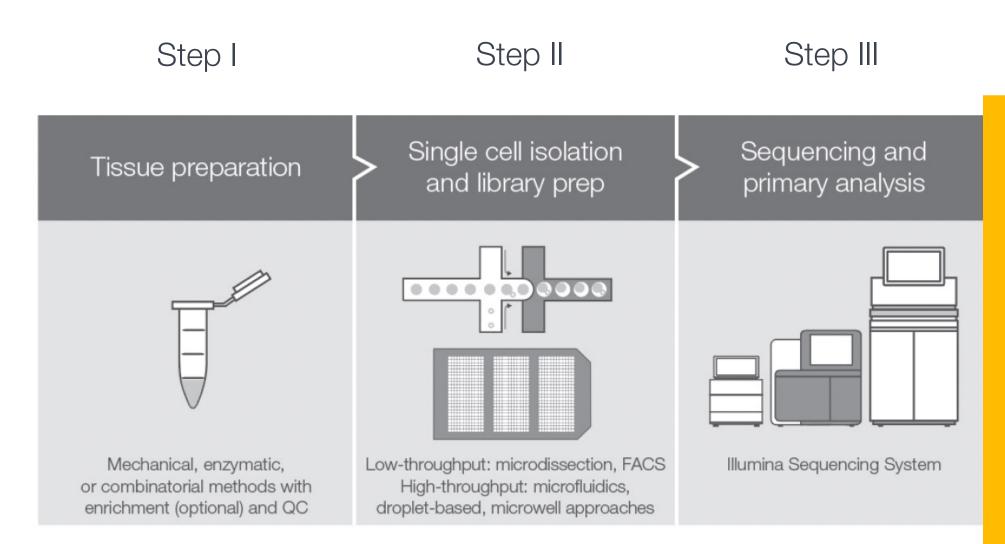
Paired end vs single-read sequencing


Paired-End Reads

Alignment to the Reference Sequence

Sequencing jargon

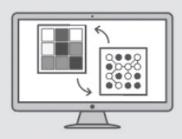
Multiplexing vs demultiplexing


STEP III: sequencing

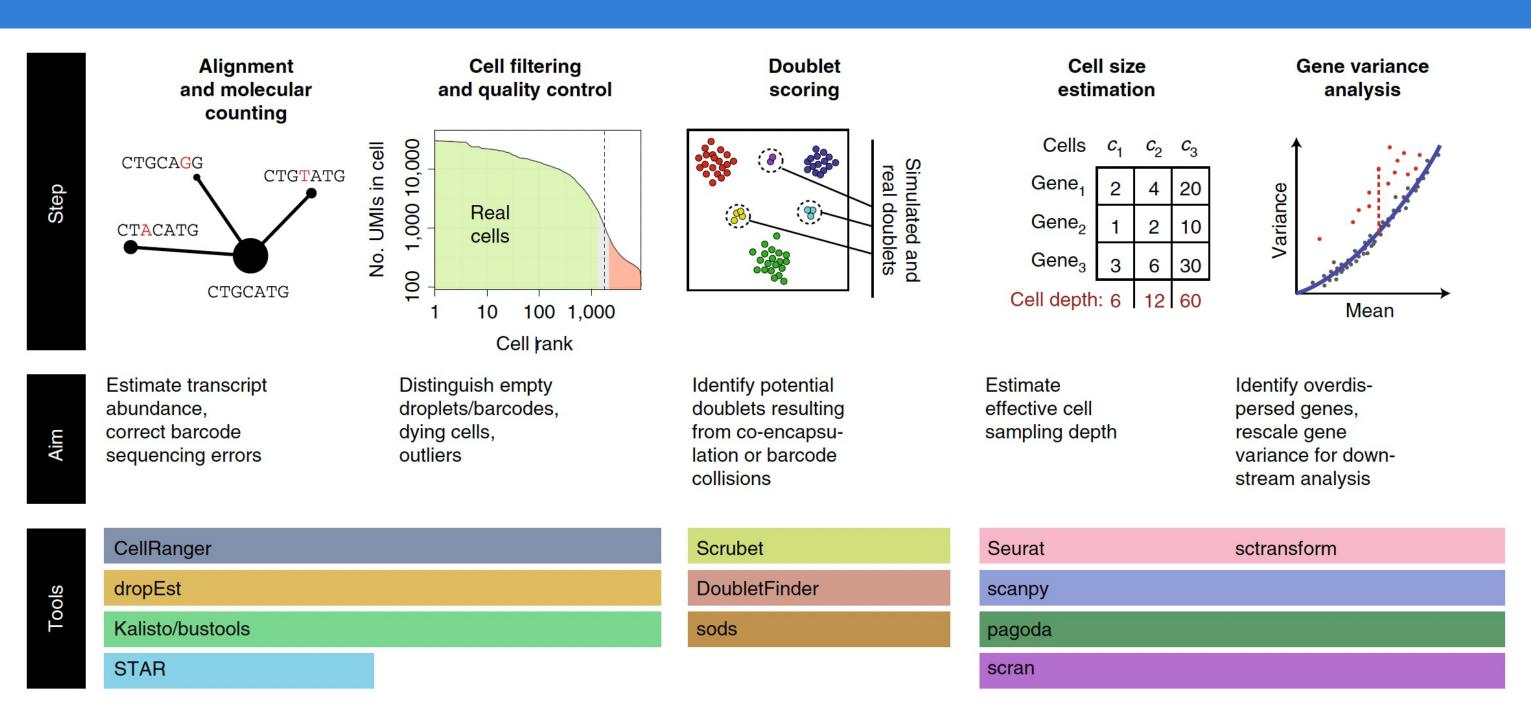
Summary –

- Choose a sequencing platform compatible w/ your tissue's biology
- Common compatible platforms NextSeq and NovaSeq
- Go with platform specific recommended sequencing depth

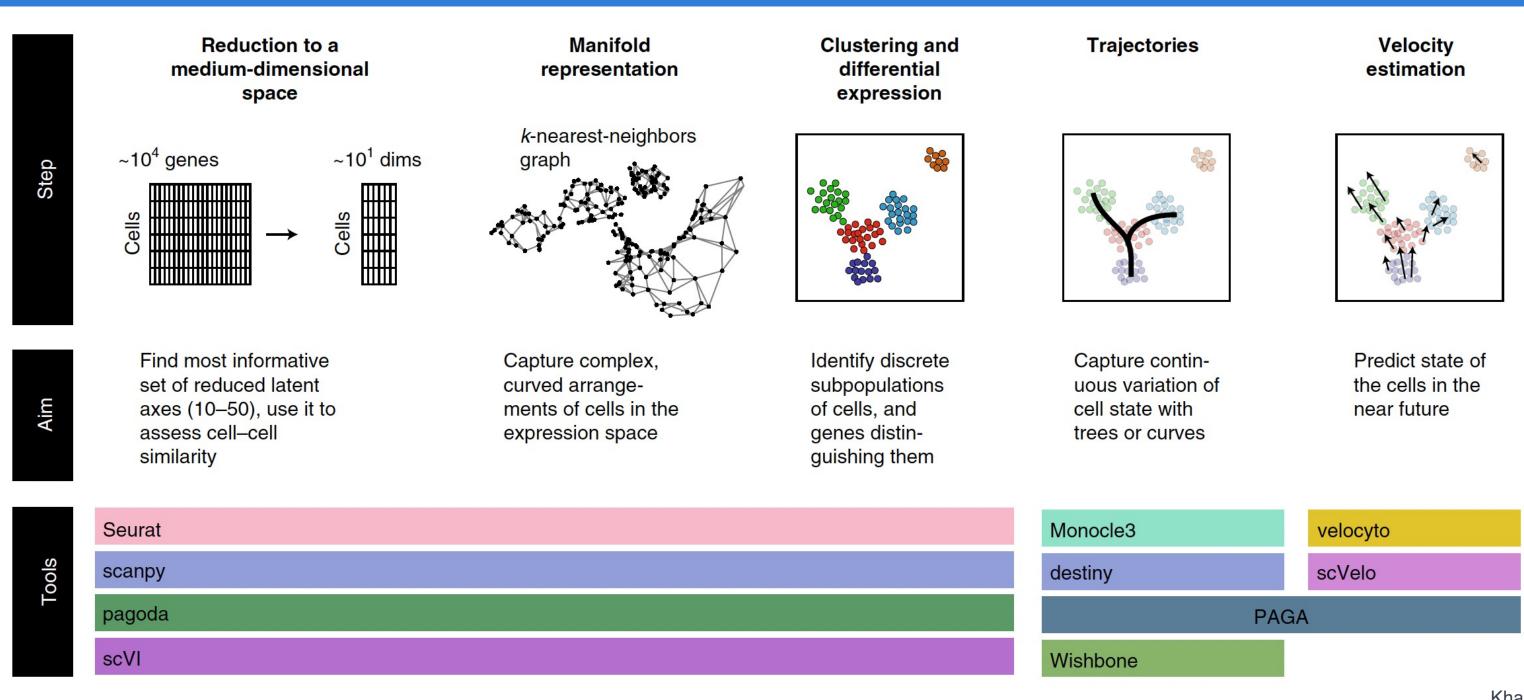
(between 20K-50K reads/cell for GEX)


Single Cell Sequencing Workflow – STEP IV

Goal: Analyze, visualize and interpret your sc data


Step IV

Data visualization and interpretation

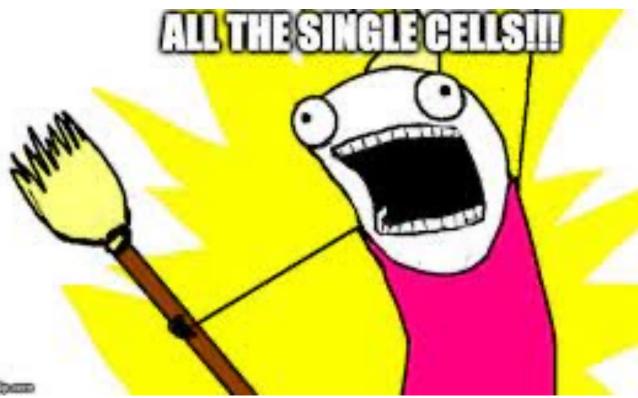

Multiple commercial and freeware secondary and tertiary analysis packages available

Key preprocessing steps in scRNAseq analysis



Kharcheno, 2021

Key analysis steps in scRNAseq analysis


STEP IV: data visualization

Summary –

- Precise pipeline for sc analysis variable and depends on research objectives of study
- Common steps in analysis primary, secondary and tertiary phases
- In these steps, sequences are aligned, data is characterized, visualized and explored

Now we will learn how to do some scRNAseq analyses!! Enjoy the workshop!

Thank you!

No. Constant

Questions?

