

Shell for Bioinformatics

https://tinyurl.com/hbc-shell-online

Harvard Chan Bioinformatics Core in collaboration with HMS Research Computing

Introductions!

Shannan Ho Sui Director

Meeta Mistry Associate Director

Lorena Pantano Director of Bioinformatics Platform

John Quackenbush Faculty Advisor

Upen Bhattarai

Heather Wick

Will Gammerdinger

Alex Bartlett

Elizabeth

Emma Berdan

James Billingsley

Zhu Zhuo

Maria Simoneau

Shannan Ho Sui Director

Meeta Mistry Associate Director

Lorena Pantano Director of Bioinformatics Platform

John Quackenbush Faculty Advisor

Upen Bhattarai

Heather Wick

Will Gammerdinger

Noor Sohail

Alex Bartlett

Elizabeth

Emma Berdan

James Billingsley

Zhu Zhuo

Maria Simoneau

Consulting

- Transcriptomics: Bulk, single cell, small RNA
- Epigenomics: ChIP-seq, CUT&RUN, ATAC-seq, DNA methylation
- Variant discovery: WGS, resequencing, exome-seq and CNV
- Multiomics integration
- Spatial biology
- Experimental design and grant support

https://bioinformatics.sph.harvard.edu/services

Consulting

- Transcriptomics: Bulk, single cell, small RNA
- Epigenomics: ChIP-seq, CUT&RUN, ATAC-seq, DNA methylation
- Variant discovery: WGS, resequencing, exome-seq and CNV
- Multiomics integration
- Spatial biology
- Experimental design and grant support

THE HARVARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER

Training

A key component of the HBC's mission is its training initiative. Our dedicated training team holds workshop to help researchers at Harvard better understand analytical methods for NGS data.

<u>HBC's training team</u> is made up of four PhD-level scientists who devote substantial time to material development, training and community building/outreach. All members of the training team also participate in consultations on research projects to ensure they remain up-to-date on current best practices in NGS analysis.

Our hands-on workshops focus on **basic data skills** and **analysis of high-throughput sequencing data**, with an emphasis on **experimental design**, current **best practices** and **reproducibility**. Our workshops are designed for **wet-lab biologists** aiming to independently design sequencing-based experiments and analysing the resulting data.

We offer three types of workshops:

- 1. <u>Short, 3-hour monthly workshops</u> (Current topics in bioinformatics)
- 2. Basic Data Skills**
- 3. Advanced Topics: Analysis of high-throughput sequencing (NGS) data**

**The basic data skills workshops serve as the foundation for the advanced workshops.

https://bioinformatics.sph.harvard.edu/training

https://bioinformatics.sph.harvard.edu/training

Training

A key component of the HBC's mission is its training initiative. Our dedicated training team holds work researchers at Harvard better understand analytical methods for NGS data.

HBC's training team is made up of four PhD-level scientists who devote substantial time to material de training and community building/outreach. All members of the training team also participate in consult research projects to ensure they remain up-to-date on current best practices in NGS analysis.

Our hands-on workshops focus on basic data skills and analysis of high-throughput sequencing an emphasis on experimental design, current best practices and reproducibility. Our workshops a for wet-lab biologists aiming to independently design sequencing-based experiments and analysing data.

We offer three types of workshops:

- 1. Short, 3-hour monthly workshops (Current topics in bioinformatics)
- 2. Basic Data Skills**
- Advanced Topics: Analysis of high-throughput sequencing (NGS) data**

**The basic data skills workshops serve as the foundation for the advanced workshops.

HARVARD

T.H. CHAN

SCHOOL OF PUBLIC HEALTH

THE HARVARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER

Workshop scope

Learning Bioinformatics

Shell is a program that allows users to control Unix/Linux OS with text commands

Terminology

Unix/Linux - The operating systems of High Performance
 Computers (HPC)

Terminology

- Unix/Linux The operating systems of High Performance
 Computers (HPC)
- Shell A program that allows users to control Unix/Linux OS with text commands

Terminology

- Unix/Linux The operating systems of High Performance
 Computers (HPC)
- Shell A program that allows users to control Unix/Linux OS with text commands
- Bash The most prevalent kind of shell

Image source: Balboa Capital Blog

If you plan to process raw high throughput sequencing data yourself, you will need to learn shell.

1. You need more resources than what is available on your laptop

- Sequence data files are LARGE
- Processing these data require increased CPU and memory
- High performance compute clusters have the necessary resources!

2. Many bioinformatics tools are only available as command-line tools

10XGenomics/ cellranger

10x Genomics Single Cell Analysis

Salmon 1.10.2

SAMtools

3. Many genomics filetypes are binary

- Binary files are not human readable
- Binary files need an interpreter

4. There are many useful commands that can help work with enormous data files

Commands for easily viewing files: less, cat, head, tail

0	##gff-version 3.2.1							
1	<pre>##sequence-region ctg123</pre>	1 1497228						
2	ctg123 . gene	1000	9000		+		ID=gene00001;Name=EDEN	
3	<pre>ctg123 . TF_binding_site</pre>	1000	1012		+		ID=tfbs00001;Parent=gene00001	
4	ctg123 . mRNA	1050	9000		+		<pre>ID=mRNA00001;Parent=gene00001;Name=EDEN.1</pre>	
5	ctg123 . mRNA	1050	9000		+		<pre>ID=mRNA00002;Parent=gene00001;Name=EDEN.2</pre>	
6	ctg123 . mRNA	1300	9000		+		ID=mRNA00003;Parent=gene00001;Name=EDEN.3	
7	ctg123 . exon	1300	1500		+		ID=exon00001;Parent=mRNA00003	
8	ctg123 . exon	1050	1500		+		ID=exon00002;Parent=mRNA00001,mRNA00002	
9	ctg123 . exon	3000	3902		+		ID=exon00003;Parent=mRNA00001,mRNA00003	
10	ctg123 . exon	5000	5500		+		<pre>ID=exon00004;Parent=mRNA00001,mRNA00002,mRNA00003</pre>	
11	ctg123 . exon	7000	9000		+	•	<pre>ID=exon00005;Parent=mRNA00001,mRNA00002,mRNA00003</pre>	
12	ctg123 . CDS	1201	1500		+	0	<pre>ID=cds00001;Parent=mRNA00001;Name=edenprotein.1</pre>	
13	ctg123 . CDS	3000	3902		+	0	<pre>ID=cds00001;Parent=mRNA00001;Name=edenprotein.1</pre>	
14	ctg123 . CDS	5000	5500		+	0	<pre>ID=cds00001;Parent=mRNA00001;Name=edenprotein.1</pre>	
15	ctg123 . CDS	7000	7600	•	+	0	<pre>ID=cds00001;Parent=mRNA00001;Name=edenprotein.1</pre>	
16	ctg123 . CDS	1201	1500		+	0	<pre>ID=cds00002;Parent=mRNA00002;Name=edenprotein.2</pre>	
17	ctg123 . CDS	5000	5500		+	0	<pre>ID=cds00002;Parent=mRNA00002;Name=edenprotein.2</pre>	
18	ctg123 . CDS	7000	7600		+	0	<pre>ID=cds00002;Parent=mRNA00002;Name=edenprotein.2</pre>	
19	ctg123 . CDS	3301	3902		+	0	<pre>ID=cds00003;Parent=mRNA00003;Name=edenprotein.3</pre>	
20	ctg123 . CDS	5000	5500		+	1	<pre>ID=cds00003;Parent=mRNA00003;Name=edenprotein.3</pre>	
21	ctg123 . CDS	7000	7600		+	1	<pre>ID=cds00003;Parent=mRNA00003;Name=edenprotein.3</pre>	
22	ctg123 . CDS	3391	3902		+	0	<pre>ID=cds00004;Parent=mRNA00003;Name=edenprotein.4</pre>	
23	ctg123 . CDS	5000	5500		+	1	<pre>ID=cds00004;Parent=mRNA00003;Name=edenprotein.4</pre>	
24	ctg123 . CDS	7000	7600		+	1	<pre>ID=cds00004;Parent=mRNA00003;Name=edenprotein.4</pre>	

5. Automation is the name of the game

- Launch many jobs with one command
- Code is used and reused to iterate tasks over multiple files
- Parallelization to complete tasks using multiple cores and increase speed!

Learning Objectives

Navigate around the command line interface (bash/shell)
 Create and manipulate text files
 Submit jobs to a high-performance computing cluster

Course schedule

Workshop Schedule

Day 1

Time	Торіс	Instructor
9:30 - 10:10	Workshop introduction	Noor
10:10 - 11:40	Introduction to Shell	Heather
11:40 - 12:00	Overview of self-learning materials and homework submission	Noor

Before the next class:

- I. Please **study the contents** and **work through all the code** within the following lessons:
- 1. Wildcards and shortcuts in Shell
 - Click here for a preview of this lesson
- 2. Examining and creating files
 - Click here for a preview of this lesson
- 3. Searching and redirection
 - Click here for a preview of this lesson

https://tinyurl.com/hbc-shell-online

Course materials

We continuously update
 our materials to reflect
 changes in the field/software

Learning Objectives

- Log in to a high-performance computing cluster
- Navigate around the Unix file system
- Differentiate between full and relative paths
- List files in a directory
- Copy, remove and move files

Setting up

We will spend most of our time learning about the basics of the shell command-line interface (CLI) by exploring experimental data on the **O2** cluster. So, we will need to log in to this remote compute cluster first before we can start with the basics.

https://tinyurl.com/hbc-shell-online

Course participation

- Mandatory review of self-learning lessons and assignments
- Attendance required for all classes
- Your questions and active participation drive learning
- We look forward to all of your questions!

Course participation

- At-home lessons and exercises after each session
- Cover material not previously discussed
- Provides us feedback to help pace the course appropriately
- ✤ 3-5 hours to complete
- Homework load is heavier in the beginning of this workshop series and tapers off

Using AI for Assignments

🔶 Do

- Try to resolve error messages with it
- Test code written by AI on a dataset where you have expected results
- Take the time to review the generated code line-by-line

✤Don't

- Implement it in replacement to learning
- Write code that you don't understand
- Assume the output from an AI process is correct

Odds & Ends

 Quit/minimize all applications that are not required for class

Are you all set?

Odds & Ends

Questions for the presenter?

Post the question in the Chat window OR

when the presenter asks for questions

Let the Troubleshooter know

Odds & Ends

Questions for the presenter?

Post the question in the Chat window OR

- when the presenter asks for questions
- Let the Troubleshooter know
- Technical difficulties with software?
 - Start a private chat with the Troubleshooter with a description of the problem

Thanks!

Kathleen Chappell and Andy Bergman from HMS-RC <u>Data Carpentry</u>

These materials have been developed by members of the teaching team at the <u>Harvard Chan Bioinformatics</u> <u>Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons</u> <u>Attribution license (CC BY 4.0)</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Contact Us

HBC training team: <u>hbctraining@hsph.harvard.edu</u>
 HBC consulting: <u>bioinformatics@hsph.harvard.edu</u>
 O2 (HMS-RC): <u>rchelp@hms.harvard.edu</u>