

High-Performance Compute Cluster

Thanks to

Raminder Singh, Daniel Caunt, Maggie McFee and Muneeba Syed

at FAS-RC for help with these slides

Cluster Architecture

The cluster is a multi-user shared environment that runs tens of thousands of jobs each day from thousands of users

It is comprised of over 1800 nodes and is connected to more than 60 Petabytes of storage.

Each lab group on the cluster has an equal allotment of usage called 'fairshare' that is then shared amongst that lab's users. As a lab runs jobs, its fairshare decreases, but Fairshare is replenished for each lab over time. This ensure that all labs have equal access to the cluster.

The SLURM job scheduler ensures that jobs are fairly and equally distributed and scheduled based on available resources and fairshare score.

The cluster is a multi-user shared environment that runs tens of thousands of jobs each day from thousands of users

It is comprised of over 1800 nodes and is connected to more than 60 Petabytes of storage.

Each lab group on the cluster has an equal allotment of usage called 'fairshare' that is then shared amongst that lab's users. As a lab runs jobs, its fairshare decreases, but Fairshare is replenished for each lab over time. This ensure that all labs have equal access to the cluster.

The SLURM job scheduler ensures that jobs are fairly and equally distributed and scheduled based on available resources and fairshare score.

The cluster is a multi-user shared environment that runs tens of thousands of jobs each day from thousands of users

It is comprised of over 1800 nodes and is connected to more than 60 Petabytes of storage.

Each lab group on the cluster has an equal allotment of usage called 'fairshare' that is then shared amongst that lab's users. As a lab runs jobs, its fairshare decreases, but Fairshare is replenished for each lab over time. This ensure that all labs have equal access to the cluster.

The SLURM job scheduler ensures that jobs are fairly and equally distributed and scheduled based on available resources and fairshare score.

The cluster is a multi-user shared environment that runs tens of thousands of jobs each day from thousands of users

It is comprised of over 1800 nodes and is connected to more than 60 Petabytes of storage.

Each lab group on the cluster has an equal allotment of usage called 'fairshare' that is then shared amongst that lab's users. As a lab runs jobs, its fairshare decreases, but Fairshare is replenished for each lab over time. This ensure that all labs have equal access to the cluster.

The SLURM job scheduler ensures that jobs are fairly and equally distributed and scheduled based on available resources and fairshare score.

The cluster is a multi-user shared environment that runs tens of thousands of jobs each day from thousands of users

It is comprised of over 1800 nodes and is connected to more than 60 Petabytes of storage.

Each lab group on the cluster has an equal allotment of usage called 'fairshare' that is then shared amongst that lab's users. As a lab runs jobs, its fairshare decreases, but Fairshare is replenished for each lab over time. This ensure that all labs have equal access to the cluster.

The SLURM job scheduler ensures that jobs are fairly and equally distributed and scheduled based on available resources and fairshare score.

To access the FASRC cluster, you will need a FASRC account sponsored by a PI on the cluster. PI's have lab groups, lab groups have resources, lab members have access to those resources. Users of the cluster can belong to multiple groups, but only one group is your primary group and sponsor.

Using the cluster!

https://www.youtube.com/watch?v=Ay8oR5n-yyQ

https://docs.rc.fas.harvard.edu/kb/quickstart-guide/

Cluster Quick Start Guide

Table of Contents > [show]

This guide will provide you with the basic information needed to get up and running on the FASRC cluster for simple command line access. If you'd like more detailed information, each section has a link to fuller documentation

PREREQUISITES

1. Get a FASRC account using the account request tool.

Before you can access the cluster you need to request a Research Computing account.

See How Do I Get a Research Computing Account for instructions if you do not yet have an account.

See the account confirmation email for instructions on setting your password and getting started.

Once you have an account you can use the Terminal to connect to the cluster

- Mac: Terminal
- 🗴 Linux: Xterm or Terminal
- Windows: SSH client Putty or Bash Emulator Git Bash

\$ ssh username@login.rc.fas.harvard.edu

- ssh stands for Secure SHell
- ssh is a protocol for data transfer that is secure, i.e the data is encrypted as it travels between your computer and the cluster (remote computer)
- Commonly used commands that use the ssh protocol for data transfer are, scp and sftp

Once you have an account you can use the Terminal to connect to the cluster

- Mac: Terminal
- 🗴 Linux: Xterm or Terminal
- Windows: SSH client Putty or Bash Emulator Git Bash

\$ ssh username@login.rc.fas.harvard.edu

Login issues? See https://rc.fas.harvard.edu/resources/support/

Password: Verification code:

https://www.rc.fas.harvard.edu/resources/quickstart-guide/

Once you have run the ssh command:

- Enter your password (cursor won't move!)
- Add a verification code (2-Factor Authentication)

2. Setup OpenAuth for two factor authentication

Open Auth

Once you have your new FASRC account, you will need to set up our OpenAuth tool for two-factor authentication.

See the OpenAuth Guide for instructions if you have not yet set up OpenAuth.

For troubleshooting issues you might have, please see our troubleshooting page.

OpenAuth is 2-factor authentication separate from HarvardKey and updates the token every 30 seconds

rsk394 — rkhetani@holylogin03:~ — ssh rkhetani@login.rc.tas.harvard.edu — 92×40
11111111111111111111111111111111111111
Welcome to Cannon, a HPC resource for the research community, hosted by Research Computing at HU's Faculty of Arts and Sciences.
+ Helpful Documentation:+ https://rc.fas.harvard.edu/resources/quickstart-guide/ https://rc.fas.harvard.edu/running-jobs/ https://rc.fas.harvard.edu/convenient-slurm-commands/ ++
+
NEXT MAINTENANCE: NOVEMBER 4TH 7-11AM
https://www.rc.fas.harvard.edu/maintenance
CANNON: Cannon is live! See the Running Jobs page for information about the updated partitions.
https://www.rc.fas.harvard.edu/resources/running-jobs/#Slurm_partitions
For more about the new cluster see:
https://www.rc.fas.harvard.edu/fasrc-cluster-refresh-2019/
GENERAL: The general partition has been decommissioned. Please use the shared partition. For high memory jobs use bigmem.
WINTER MAINTENANCE DECEMBER 3RD 7AM-5PM: We are doing an all day major maintenance on December 3rd which will involve all running jobs being cancelled. More details forthcoming soon. Please plan accordingly.

You have logged into the login node!

[joesmith@holylogin03 ~]\$

Name of the login node assigned to you

- Login node:
 - not designed for analysis
 - not anything compute- or memory-intensive
 - best practice is to request a compute node as soon as you log in

- Login node:
 - not designed for analysis
 - not anything compute- or memory-intensive
 - best practice is to request a compute node as soon as you log in
- Interactive session on a compute node:
 - work on a compute node "interactively"
 - request resources from SLURM using the salloc command
 - ongoing analysis will terminate when the remote connection is terminated

- Login node:
 - not designed for analysis
 - not anything compute- or memory-intensive
 - best practice is to request a compute node as soon as you log in
- Interactive session on a compute node:
 - work on a compute node "interactively"
 - request resources from SLURM using the salloc command
 - ongoing analysis will terminate when the remote connection is terminated
- Batch job (compute node):
 - Send an analysis script to a compute node
 - request resources from SLURM using #SBATCH directives in a shell script
 - use the sbatch command to submit the shell script
 - disconnecting the connection to the cluster has no impact on analysis

The Job Scheduler, SLURM

Simple Linux Utility for Resource Management - SLURM job scheduler:

- Fairly allocates access to resources to users on compute nodes
- Manages a queue of pending jobs; ensures that no single user or group monopolizes the cluster
- Ensures users do not exceed their resource requests
- Provides a framework for starting, executing, and monitoring batch jobs

The resources managed by SLURM

1. Time (-t)

• Specified as days-hours:minutes (4-12:00) or hours:minutes:seconds (12:00:00)

1. Time (-t)

• Specified as days-hours:minutes (4-12:00) or hours:minutes:seconds (12:00:00)

2. Number of cores (-c)

- 1. Time (-t)
 - Specified as days-hours:minutes (4-12:00) or hours:minutes:seconds (12:00:00)
- 2. Number of cores (-c)
- 3. Memory (--mem or --mem-per-cpu)
 - --mem sets total memory across all cores
 - --mem-per-cpu sets the value for each requested core.

1. Time (-t)

- Specified as days-hours:minutes (4-12:00) or hours:minutes:seconds (12:00:00)
- 2. Number of cores (-c)
- 3. Memory (--mem or --mem-per-cpu)
 - --mem sets total memory across all cores
 - --mem-per-cpu sets the value for each requested core.

4. Cluster partitions (-p)

- The many compute nodes on any cluster are grouped together based on the resources available on them, and at the system administrator's discretion
- These groups are called partitions
- Depending on the resources you require, you pick the one best suited for your work

Partitions:	shared	gpu	test	serial_requeue	gpu_test	gpu_requeue	bigmem	unrestricted	pi_lab
Time Limit	7 days	7 days	8 hrs	7 days	8 hrs	7 days	7 days	no limit	no limit
# Nodes	426	18	16	varies	11	Varies	30	8	varies
# Cores / Node	48	64	48	varies	32	varies	64	48	varies
Memory / Node (GB)	184	499	184	varies	373	varies	499	184	varies

Partitions:	shared	gpu	test	serial_requeue	gpu_test	gpu_requeue	bigmem	unrestricted	pi_lab
Time Limit	7 days	7 days	8 hrs	7 days	8 hrs	7 days	7 days	no limit	no limit
# Nodes	426	18	16	varies	11	Varies	30	8	varies
# Cores / Node	48	64	48	varies	32	varies	64	48	varies
Memory / Node (GB)	184	499	184	varies	373	varies	499	184	varies

Looking at a Partition to learn more:

sinfo -p shared

scontrol show partition shared

Job submissions for SLURM

Job submissions with Slurm

Slurm-specific commands are used to run jobs on the compute nodes

• The arguments used by salloc, sbatch are identical, e.g. -p, -t, --mem

More information: https://docs.rc.fas.harvard.edu/kb/running-jobs/

Slurm Job Script (for sbatch)

Slurm Job Script (for sbatch)

Save script as myJobScript.run and run it as follows:

\$ sbatch myJobScript.run

Test first

ALWAYS test the job submission script first:

- To ensure the job will complete without any errors
- To ensure you understand the resource needs and have requested them appropriately

Interacting with Slurm

Slurm-specific commands are used to run jobs on the compute nodes

• Several other commands exist to monitor jobs, control/modify them, obtain information about partitions and user-specific information, etc.

	SLURM	SLURM Example
Submit a batch serial job	sbatch	sbatch runscript.sh
Run a script or application interactively	salloc	salloc -p test -t 10mem 1000 [script or app]
Start interactive session	salloc	salloc -p test -t 10mem 1000
Kill a job	scancel	scancel 999999
View status of your jobs	squeue	squeue -u akitzmiller
Check current job by id number	sacct	sacct -j 999999
Schedule recurring batch job	scrontak	see scrontab document for example

More information: https://docs.rc.fas.harvard.edu/kb/running-jobs/

Using & installing software

- Most "software" on the FAS-RC cluster is installed as an environment module.
- LMOD system adds directory paths of software into the \$PATH variable, to make sure the program runs without any issues.
- Allows for clean, easy loading, including most dependencies, and switching versions.
- All available sofware is listed on this webpage -
 - <u>https://portal.rc.fas.harvard.edu/p3/build-reports/</u>

Check module status (e.g. the alignment tool bowtie2)

- \$ module list
- \$ echo \$PATH
- \$ bowtie2

Check module status (e.g. the alignment tool bowtie2)

- \$ module list
- \$ echo \$PATH
- \$ bowtie2

wtie 2 tie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences			
Bowtie2/2.3.4.1-intel-2017c	Easy Build		
Fo activate this build:			
module load intel/2017c impi/2017.4.239 Bowtie2/2.3.4.1			
Bowtie2/2.3.4.1-intel-2017b			
To activate this build:			
module load intel/2017b impi/2017.3.196 Bowtie2/2.3.4.1			

Check module status (e.g. the alignment tool bowtie2)

- \$ module list
- \$ echo \$PATH
- \$ bowtie2

Load the module

\$ module load intel/2017c impi/2017.4.239 Bowtie2/2.3.4.1

Check module status (e.g. the alignment tool bowtie2)

- \$ module list
- \$ echo \$PATH
- \$ bowtie2

Load the module

\$ module load intel/2017c impi/2017.4.239 Bowtie2/2.3.4.1

Recheck module status

- \$ module list
- \$ echo \$PATH
- \$ bowtie2
- \$ which bowtie2

Check module status (e.g. the alignment tool bowtie2)

- \$ module list
- \$ echo \$PATH
- \$ bowtie2

Load the module

\$ module load intel/2017c impi/2017.4.239 Bowtie2/2.3.4.1

Recheck module status

- \$ module list
- \$ echo \$PATH
- \$ bowtie2
- \$ which bowtie2

Unloading modules					
<pre>\$ module unload Bowtie2/2.3.4.1</pre>					
Dump all modules					
<pre>\$ module purge</pre>					

Filesystems and Storage

Data Storage: <u>https://www.youtube.com/watch?v=rGH96xVQNyM</u>

Moving data around: <u>https://www.youtube.com/watch?v=n1I4-4TGVP8</u>

Filesystems and storage

- Storage on HPC systems is organized differently than on your personal machine
- Physical disks are bundled together into a virtual volume; this volume may represent a single filesystem, or may be divided up, or partitioned, into multiple filesystems
 - Filesystems are accessed over the internal network

	Home Directories	Lab Storage	Local Scratch	Global Scratch	Persistent Research Data
Mount Point	/n/home#/ \$USER	/n/pi_lab	/scratch	/n/\$SCRATCH	/n/\$REPOS
Size Limit	100GB	4TB+	70GB/node	2.4PB total	3PB
Availability	All cluster nodes + Desktop/laptop	All cluster nodes + Desktop/laptop	Local compute node only.	All cluster nodes	All cluster nodes
Retention Policy	Indefinite	Indefinite	Job duration	90 days	3-9 mo
Backup	Hourly snapshot + Daily Offsite	Daily Offsite	No backup	No backup	External Repos No backup
Performance	Moderate. Not suitable for high I/O	Moderate. Not suitable for high I/O	Suited for small file I/O intensive jobs	Appropriate for large file I/O intensive jobs	Appropriate for large I/O intensive jobs
Cost	Free	4TB Free + Expansion at a cost	Free	Free	Free

Home Directories

Mount Point	/n/home#/ \$USER
Size Limit	100GB
Availability	All cluster nodes + Desktop/laptop
Retention Policy	Indefinite
Backup	Hourly snapshot + Daily Offsite
Performance	Moderate. Not suitable for high I/O
Cost	Free

- Your primary, private, space on the cluster.
- Custom software installations, job scripts, and other important data should live here.

https://docs.rc.fas.harvard.edu/kb/additional-groups/

Mount Point Size Limit **Availability Retention Policy** Backup Performance Cost

- The primary shared space for a group/ lab.
- Datasets, lab work, and job results should live here.

Lab Storage	
/n/pi_lab	• The pr lab.
4TB+	Datase
All cluster nodes + Desktop/laptop	should
Indefinite	
Regular Offsite	
Moderate. Not suitable for high I/O	Data Storag
TB Free + Expansion	Moving date

at a cost

- The primary shared space for a group/ lab.
- Datasets, lab work, and job results should live here.

Data Storage: <u>https://www.youtube.com/watch?</u> <u>v=rGH96xVQNyM</u>

Moving data around: <u>https://www.youtube.com/</u> <u>watch?v=n1I4-4TGVP8</u>

Cluster Help + Resources

- Documentation
 - https://docs.rc.fas.harvard.edu/
- Portal
 - http://portal.rc.fas.harvard.edu/rcrt/submit_ticket
- Email
 - rchelp@rc.fas.harvard.edu
- Office Hours
 - Wednesdays 12pm-3pm
 - <u>https://www.rc.fas.harvard.edu/training/office-hours/</u>
- Training
 - <u>https://www.rc.fas.harvard.edu/upcoming-training/</u>

