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SINGLE CELL CORE: SAMPLE REPERTOIRE

Primary Cells and Tissue In Vitro Cultures
. Whole embryo, embryonic stem cells . Differentiated cells from iPSC'’s
Blood and immune cells, hematopoietic . Organoids
stem cells . Genetically engineered cells (organ-
Brain and spinal cord on-chip)
Retina
Thymus
Lung
Stomach, intestine, colon
Heart
Liver

Adipose tissue

HARVARD | rsoscscoresmoramorcss

'CH CORES AND TECI
MEDICAL SCHOOL Single Cell Core
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TECHNOLOGIES SUPPORTED BY SCC

Single modality:

' 10,\ GENOMICS' + Single cell and single nuclei RNA-seq
e + 3’- & b'-gene expression
Jes « Fixed RNA profilin
Parse e Fluent profiling

* Single cell ATAC-seq
Multiple modalities (Multiome)

BIOSCIENCES ‘.,BioSciences

PqCBi‘ * CITE-seq- cell surface receptor w/ scRNA-seq
s  Combined scATAC-seq and scRNA-seq
NANOPORE Long-read sequencing

Technologies

* PacBio (Kinnex) & Oxford Nanopore Technologies

Spatial transcriptomics
V I Z e n * |Image-based
« MERSCOPE (From Vizgen)
_ * NGS-based
CHO2 «  VISIUM/VISIUM HD (From 10X Genomics)
* STOmics (From Complete Genomics)
* Curio Seeker (From Curio Bioscience)

Completed

GENOMICS”

#¢§ HARVARD

MEDICAL SCHOOL

EEEEEEEEEEEEEEEEEEEEEEEEEE

Single Cell Core https://singlecellcore.hnms.harvard.edu




TALK OUTLINE

* Overview of the emerging single cell technologies and applications

* Diverse biological questions being addressed by these
technologies

e Choosing the correct platform

 Workflow of scRNA-seq experiment- sample prep, library
preparation and sequencing

* Challenges- batch effect



WHY SINGLE CELL?
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Tang et al. 2009 Islam et al. 201124
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Single cells in study
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HISTORY & PROGRESS

Integrated fluidic
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Cao et al. 20175
Rosenberg et al. 201752

Jaitin et al. 2014% Klein et al. 20153

Macosko et al. 20154

Bose et al. 20154

B 10x Genomics SPLiT-seq
Drop-seq (po /sci-RNA-seq
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— DroNC-seq
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N ‘ © e, o o o SMART-seq2
B o SMART-seq
I l L I l l | I
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Study publication date

Svennson et al., Nature Protocols (2018)



TECHNOLOGIES

High
throughput -

-+ Cell
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Low throughput
A® ; . ® . . ‘
Fal®lal® Sort sngle cells . . .

C® & a» ..

RT and cDNA amplifcation

Adapted from Baysoy et. al; Nature Reviews Molecular Cell Biology | Volume 24 |
October 2023 | 695-713

Throughput is high- can profile many thousands
of cells per sample

Can profile transcripts from either 3’ or 5’ end.
Therefore, allele-specific expression or splice
variants cannot be detected (exception: long-

read sequencing compatible with single cell
workflow)

o

Honeycomb Biosciences

-
—
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BD Rhapsody

w " %

SCIPIO Bioscience

L
Fluent Biosciences

Parse Biosciences

* Can generate full-length transcripts.
* Has high sensitivity
* Throughputis low- limited by plate-size or cell numbe

b g,ﬂr)

Fluidigm C1

iCell8 from TakaraBio
(SMART-seq)



THROUGHPUT VS SENSITIVITY
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LOW THROUGHPUT: SMART-SEQ 2/3/4
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Cells
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SMART-Seq v4
Oligonucleotide

Total RNA or cell(s)

\4

Optimized
TS-RT
poly A 3'
* 3' SMART-Seq CDS
Primer llA

First-strand synthesis
and tailing by RT

IRV AV VAV V V V VoV VoV VoV V VoVl
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Blocked PCR
Primer I1 A

* y\)OOO( 5'

Template switching
and extension by RT

1) )OOQO(

TakaraBio

\/

*

Amplify cDNA by LD
PCR with blocked PCR
Primer Il A

Double-stranded cDNA

*

*

M Hagemann-Jensen et al, Single-cell RNA counting at allele- and isoform-resolution using Smart-seq3 bioRxi\

5’ tagged reads

E=—a Dl count Cellno. 1 2 3 4 ..

P O—m—m  of transcripts N ” === |60 6 19 7
5’ isoform structure g :l/\]:(b 0 2 17 70
S 580 1 61..
s e e
W Internal reads P 2 e 8 53 3 57 ...

= 0 0 Full isoform
" }——{—HH] reconstruction

Single-cell digital isoform counts matrix

Macosko; Nature BiotechNology | VOL 38 | JuNe 2020 | 697-700

Plate-based- individual cells are sorted into
single well

Gives full transcript information. Isoform
detection is possible.

Sensitivity is high.

Sequencing is costly.



MICROFLUIDIC DROPLET MICROWELL

Scanner

1 O/\ GENOMICS®

©BD
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dissolvable beads

D Cell encapsulation (with beads) @ Cell lysis 3 Library preparation and sequencing
e S " Express
: Reverse transcription in droplets Added at the end :
| Barcoding primer of the transeript '
' ece |
! 1
Barcoding | - |
Errsioh 1 Template switch |
————— >, ,And transcript extension :
5 (PCR handle Cell barcode (/1 Juppannny GONA BCCCCCC .
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! De-emulsification !
I Library construction + PCRl !
« |RT mix mENy ¥ R1 R2 ]
|
1
I
1
1

Water-in-oil droplet | ot
] . .
\ Sequencing and analysis

_____________________________

* Barcoding inside the droplet

* Supports a plethora of applications-
scRNAseq, multiome, CRISPR screening

* Single cell, nuclei or fixed cells

Magnetic bead with immobilized
oligos

Real-time cell count, viability, true
doublet rate

* Supports scRNAseqg and multiome
e Single cell and nuclei



COMBINATORIAL BARCODING

SPLiT-seq (Split-pool ligation-based transcriptome

sequencing
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Rosenberg et. al; SCIENCE, Vol. 360, Issue 6385, pp. 176-182

P4 QD

Parse * Combinatorial barcoding by in-situ ligation
Blosoiences ¢ Supports scRNA-seq and CRISPR screening
* Fixed cells and nuclei

MICROFLUIDIC-FREE
DROPLET

PIP-seq (Pre-templated Instant Partitions)

a Add monodispersed PAA b Soak beads in PCR reaction mix C  Remove
beads to PCR reaction mix excess aqueous

.;.D ; ?@0./@\; @ Template
° .b ! A ~O Primer, probe
° D b
@ oJ °0| ® onre
\10 Q:&\, .° @ Enzyme

Hatori et. al; Anal Chem. 2018 Aug 21; 90(16): 9813-9820.

* Barcoding inside the droplet
* Supports scRNA-seq
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122844/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122844/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122844/

CARDIAC TISSUE PROFILING USING ICELLS

Differential gene expression

EC FB MP SMC
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e
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+SNE 2

20

Cluster:

t-SNE 2

- AV
* LA1
* LA2

* LA3
* LA4
* LA5

* LV1
°LV2
*LV3

*LVv4
*LV5

tSNE 2

Cluster:

v+« Tissue type- normal adult human heart

Both cardiomyocytes and non-
cardiomyocytes

~2000 genes per cell were detected

~7500 cells profiled

Median sequencing depth- ~300,000
reads per cell

Wang et. Al; Nature CELL BIOLOGY | VOL 22 | JANUARY 2020 | 108-119



UMAP2

CARDIAC TISSUE PROFILING USING SPLiT-SEQ

hiPSCs

Cardiomyocytes

D12

N

-10

Sample type- Human iPSC-derived
cardiomyocytes

Time-point study- Cells from a
total of 55 samples from multiple
independent differentiation
experiments with 4 different cell
lines, 2 differentiation protocols

4 time-points
~12,000 cells were clustered here

Expected seq depth- Min. 20,000

reads per cell
Grancharova et. Al; Sci Rep. 2021; 11: 15845.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338992/

Neutrophil profiling using multiple scRNA-se

UMAP2

UMAP2

Seqg-well

Cell type annotation

@ Neutrophils

© Immature neutrophils
O Eosinophils

@ Classical monocytes

O Classical/lntermediate monocytes

O Non-classical monocytes
@ Tcells

@ Activated T cells

CD8'T cells/NK cells

B cells

Plasma cells/pDCs
Erythrocytes
Megakaryocytes
Doublets

coceeoceo

® N1S
® N2S
® N3S
® N4S
® N5S

Ribosomal gene-rich cells

Cigarette smoke
(4x)

7-8 week old female
BALB/c mice

sorting of live
CD45’ cells

v

scRNA-seq

UMAP2

o

-10

BD Rhapsody

e e °
3 Control 3 COPD

Blood collection
and processing

Whole transcriptome analysis
2 Sample Tags
45 Ab-seq markers

Q
Cluster annotation and
neutrophil filtering

Q

Single-cell signature
matching with study cohort

Neutrophil dataset

4,072 cells

@ N1R
@ N2R
® N3R
© N4R
® N5R

-5 -2.5 0
UMAP1

10X Genomics

Murine blood (33,577 cells)

N

-

@ pre/pro B cells

@ Plasma cells

@ Mature B cells

© Immature B cells
@ Neutrophils

© Promyelocytes
© Monocytes/Macrophages
© Monocytes

© pDCs

® Basophils

® T cells

O Cytotoxic T cells
® NK cells

® Erythrocytes

© Megakaryocytes
O Low quality cells

© Doublets

Kapellos et. Al; Cell Reports 42, 112525, June 27, 2023

D

Neutrophils (10,181 cells)

q methods




KEY CONSIDERATIONS FOR CHOOSING A TECHNOLOGY

* Biological guestion/ experimental design
 Sample type- fresh/frozen/fixed; single cell or nuclei
* Assay type- single cell or multiome or immune profiling
* Celltype of interest- cell size, fragility of cells etc.
* Do you need full length transcript information? Long-read
sequencing is an option
* Scale
* How many sample?
* How many cells per sample?
* Isitalow input sample?
* Cost
* Rarerthe cell type of interest, more cells one needs to profile
* |ssample pooling an option?
* Sequencing depth



scRNA-seq WORKFLOW
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HIGH SAMPLE QUALITY

* High viability

» More than 90% viability is ideal.

» Cell membrane integrity is required until they are encapsulated.
* Good single cell suspension. No clumps.
* Clean prep with little or no debris.

T o1 1O o] 0J J0OJ [ J

Nanowell-based barcoding platform Droplet-based barcoding platform
©
2.
o
5. More backg round .More wasted reads
130 [ R T oo RS I R

Reads/ cell barcode Reads/ cell barcode Reads/ cell barcode
Ideal data Free-floating RNA
‘V 3 HARVARID | cesearcncones worecsmoroor

Single Cell Core

MEDICAL SCHOOL

Provided by HSPH




TRANSCRIPTOME IS STRESS-SENSITIVE

Single molecule FISH analysis shows that Dissociation time experiment confirms that

Fos expression is induced during the SC the dissociation procedure influences the

isolation procedure. transcriptome of SCs.
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Van Den Brink et.al: Nature Methods volume 14, pages935-936(2017)


https://www-nature-com.ezp-prod1.hul.harvard.edu/nmeth
https://www-nature-com.ezp-prod1.hul.harvard.edu/nmeth

collagenase, liberase, accutase.

SAMPLE PREPARATION

* Enzyme-based dissociation- trypsin,

* Gentle washes.
* Dead cell removal kit, filtering out the

debris.

» Density gradient (Ficoll, Optiprep)

Solid tissue

—

Adherent cell culture

Dissociation

Suspended cell culture

Liguid tissue

7

Enrichment

Quality check

Magnetic bead
selection

FAC sorting
(Stain for
viability)

Cell conc.

Cell buoyancy
Viability (Dapi
Trypan blue)

e




ENRICHMENT METHODS: PROS & CONS

FACS (Fluorescence activated cell
sorting)

Pros:

Enrichment is robust. Can be really
useful for rare population of cells.
Yields good single cell suspension.
Live/dead sorting by DNA stains, eg.
DAPI.

Cons:

Uses high pressure to sort the cells,
therefore can be pretty harsh.
Can introduce bias in the experiment.

Using a broad marker is recommended.

Long sample prep protocol.

MACS (Magnetic-activated cell sorting)

Pros:

Gentle on cells.

Fast protocol.

Greater number of cells can be
processed at a time.

Not limited by FAC sorter availability.

Cons:

Number of available surface marker-
conjugated to magnet is limited.
Enrichment is not precise. Not
applicable for rare population.



SAMPLE PREP CHALLENGES & SOLUTIONS

Single Cell

PROS

e Superior data quality

CONS

e Time-consuming and
time-sensitive

e Limits the number of
samples that can be run

e Achieving high cell
viability is challenging

Single Nuclei

PROS
e Faster protocol

e Amenable for complex
experimental design

CONS

e Challenging

e Presence of debris

e Counting is challenging

e Not compatible for
certain cell population.

Fixed samples

PROS

e Simplifies experimental
design involving many
samples

e Choice of fixative
depends on
experimental goals

CONS

e High cell loss



SAMPLE PREPARATION VARIES BY QUESTION

tSNE_2

o |Median G - A
2 |Total: 2041 R !
scRNA-seq snRNA-seq soRNA-seq: 833
e snRNA-seq: 2
Inﬂo lacs (4) g 2 1
. g’g Protocol: )
* ke 0 g -
% . A w | Median Transcripts -
P wls | % R B Total: 3926
] J scRNA-seq: 1889 8
Z snRNA-seq: 4385
(ieggﬁe: 3|.0 3‘5 4r.0 4‘.5 5I.0
o \ ) :gzﬂr:xgt;glc;zp Log10 Transcript counts
o - R ® cVLSEC . .
& 3 ey e * SnRNA-seq captured a greater diversity of genes
Mature B cells (16) N N e_rizina cee s . ] .
. *  Non ammator e than scRNA-seq- high proportion of UMIs in
Cholangiocytes (17) s @ Periportal He| . .
| | | | | selae” scRNA-seq data are derived from transcripts
e encoding ribosomal proteins and genes
All major hepatic cell types were represented in both encoded in the mitochondrial genome, which
scRNA-seq and snRNA-seq, but were captured at different are not present in snRNA-seq data

frequencies.
* scRNA and snRNA don’t cluster together due to
Cholangiocytes and parenchymal cells were the systemic difference between the RNA found
underrepresented. in the nucleus vs in the cytoplasm. Also the
preparation methods for these two are different.
Immune cells were more easily detected in the single cell Andrews et. al; bioRxiv; https://doi.org/10.1101/2021.03.27.436882



DIFFERENT APPROACHES FOR BARCODING
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SEQUENCING BY SYNTHESIS (ILLUMINA)

35
DNA
(0.1-5.0 pg) : .
I ®
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Single molecule array
Sy
Library Preparation E Cluster Growth 1:] Sequencing
1 2 3 4 5 6 7 8 9
- Image Acquisition jj Base Calling

https://www.youtube.com/watch?v=fCd6B5HRaZ8&t=3s



Number of clusters = Number of reads
Number of cycles = Length of reads

n
L—-————J
—

MiniSeq MiSeq NextSeq HiSeq HiSeq X NovaSeq

https://www.illumina.com/systems/seguencing-platforms.htm!




THROUGHPUT & SEQUENCING DEPTH

The answer is not simple! |t depends!

* Two questions:

* How rare is the cell type of interest?

* Does it have highly expressed markers?

* Rule of thumb: 50-100 cells with unique transcriptome signature is necessary
for forming a distinct cluster in a t-SNE plot.

* Rare cell type of your interest- need to analyze many cells.
» For overall heterogeneity- fewer cells might be enough.

* Sequencing depth- rarer the transcript, higher should be the sequencing depth.
Also depends on the RNA content of the cells.



CHALLENGE: BATCH EFFECT

Batch effect represents systematic variation in data, gene expression in this case, resulting from non-
biological sources.
Sources
* Sample prep
* Animals from different clutches/ litters
* Different batches of reagents
* Operator
* Library prep performed at different time
* Different sequencing run
Solution
*  Wet-lab solution- careful experimental design
* Use biological replicates. Standard statistical considerations apply. This can become expensive.
* Same reagent batch, if possible
* Keeping the operator same
* Prepping libraries and sequencing together
* Pooling of samples by sample barcoding (hashtagging/ MULTI-seq)
* Dry-lab solution
* Sometimes batch effects are unavoidable- patient samples, time-course experiments, perturbation
experiments
» Batch effect correction works best when individual samples contain sufficient internal complexity to
identify shared sources of transcriptional variation



BEST PRACTICES FOR scRNA-SEQ EXPERIMENT

* Good sample prep is the KEY to success.
* Do not rush to the final experiment. Protocol optimization is necessary.

* A well-planned pilot experiment is essential for evaluating sample
preparation and other parameters like number of cells, sequencing depth etc.

* Include biological replicates.
* Process drug/ treatment/ mutant and control on the same day.
 Randomize the order of samples, if running on different days.

* Library prep could be a major source of batch effect. All libraries should be
prepared together.
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