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SINGLE CELL CORE: SAMPLE REPERTOIRE

Primary Cells and Tissue In Vitro Cultures
• Differentiated cells from iPSC’s
• Organoids
• Genetically engineered cells (organ-

on-chip)

• Whole embryo, embryonic stem cells
• Blood and immune cells, hematopoietic 

stem cells
• Brain and spinal cord
• Retina
• Thymus
• Lung
• Stomach, intestine, colon
• Heart
• Liver
• Adipose tissue



TECHNOLOGIES SUPPORTED BY SCC
Single modality:
• Single cell and single nuclei RNA-seq

• 3’- & 5’-gene expression
• Fixed RNA profiling

• Single cell ATAC-seq
Multiple modalities (Multiome)
• CITE-seq- cell surface receptor w/ scRNA-seq
• Combined scATAC-seq and scRNA-seq
Long-read sequencing
• PacBio (Kinnex) & Oxford Nanopore Technologies
Spatial transcriptomics
• Image-based

• MERSCOPE (From Vizgen)
• NGS-based

• VISIUM/VISIUM HD (From 10X Genomics)
• STOmics (From Complete Genomics)
• Curio Seeker (From Curio Bioscience)

https://singlecellcore.hms.harvard.edu



TALK OUTLINE

• Overview of the emerging single cell technologies and applications

• Diverse biological questions being addressed by these 
technologies

• Choosing the correct platform

• Workflow of scRNA-seq experiment- sample prep, library 
preparation and sequencing

• Challenges- batch effect



WHY SINGLE CELL?

Bulk RNA-seq scRNA-seq

Avg. exp. level

Population 1
Population 2

Population 3

Population 4



HISTORY & PROGRESS

Svennson et al., Nature Protocols (2018)



TECHNOLOGIES
High 

throughput Low throughput

Adapted from Baysoy et. al; Nature Reviews Molecular Cell Biology | Volume 24 | 
October 2023 | 695–713 

• Can generate full-length transcripts. 
• Has high sensitivity
• Throughput is low- limited by plate-size or cell number

iCell8 from TakaraBio
(SMART-seq)

Fluidigm C1

• Throughput is high- can profile many thousands 
of cells per sample

• Can profile transcripts from either 3’ or 5’ end. 
Therefore, allele-specific expression or splice 
variants cannot be detected (exception: long-
read sequencing compatible with single cell 
workflow) 

10X Genomics BD Rhapsody Honeycomb Biosciences

Fluent Biosciences
Parse Biosciences SCIPIO Bioscience



THROUGHPUT VS SENSITIVITY
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LOW THROUGHPUT: SMART-SEQ 2/3/4
                                 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing User Manual 

(021519) takarabio.com   
Takara Bio USA, Inc. 
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Adaptations to SMART technology for next-generation sequencing (NGS) were incorporated into the first-
generation of our kit for ultra-low input mRNA-seq (the SMARTer® Ultra Low RNA Kit for Illumina 
Sequencing) and published as the SMART-Seq method (Ramsköld et al. 2012). Improvements continued in 
subsequent generations of SMARTer Ultra Low kits, and the SMART-Seq method was updated to SMART-Seq2 
(Picelli et al. 2013). The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing improves upon the SMART-
Seq2 method by incorporating both the novel use of locked nucleic acid (LNA) technology into an optimized 
template switching oligo, and other advancements developed by our scientists. The enhancements in this kit result 
in single-cell mRNA-seq libraries that clearly outperform previously-published protocols (including SMART-
Seq2) and existing kits. The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing has higher sensitivity and 
reproducibility, meaning more genes are identified from libraries produced with this kit, and significantly lower 
background than the SMART-Seq2 method. For more information on SMART technology, please visit 
www.takarabio.com. A schematic outline of the technology and workflow is shown in Figure 2. 

 

Figure 2. Flowchart of SMART cDNA synthesis. The SMART-Seq v4 Oligonucleotide, 3’ SMART-Seq CDS Primer II A, and 
PCR Primer II A all contain a stretch of identical sequence. The black star indicates a chemical block on the 5’ end of the 
oligonucleotide. 
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Single-cell RNA sequencing at isoform resolution
SMART-seq3 reconstructs the full-length transcripts of single cells with high sensitivity.

Evan Z. Macosko

Technologies to sequence the few 
hundred attomoles of messenger RNA 
(mRNA) contained in single cells 

have opened new vistas onto fundamental 
principles of gene regulation, cell 
specialization, and homeostatic responses 
to perturbations. However, these methods 
generally capture only a small fraction of 
cellular mRNA (~5–10%) and frequently 
lack splice form information. In this 
issue, Hagemann-Jensen et al.1 describe 
Smart-seq3, a method that quantifies the 
majority of transcripts in individual cells 
at isoform resolution, paving the way for 
more detailed analyses of gene regulation in 
biology and medicine.

About a decade ago, the advent of 
high-throughput DNA sequencing raised 
the prospect of sampling RNA from many 
individual cells using parallelized reverse 
transcription reactions and barcoding of 
the cDNA derived from each cell. However, 

most enzymatic methods for processing 
RNA were too expensive or too slow to be 
used routinely for parallelized single-cell 
RNA-sequencing (scRNA-seq) experiments. 
Two of the most widely used scRNA-seq 
protocols published during this phase 
were CEL-seq2 and Smart-seq23, the latter 
from the same laboratory that produced 
Smart-seq31.

These technologies represented 
fundamental advances at the time, providing 
methods that were easily disseminated to 
many labs and core facilities. Importantly, 
through the open dissemination of 
protocols, reagents and supplemental data 
about the technology development process, 
they promoted an ethos of sharing that 
remains to this day. They also led directly to 
the field’s next technology phase, in which 
the enzymatic strategies were integrated 
with microfluidic4,5 and/or combinatorial 
indexing6–8 techniques to dramatically 

increase the cellular throughput of 
scRNA-seq. The current high-throughput 
methods now enable comprehensive 
definitions of cell types and states within 
complex tissues and organisms.

Yet the current methods still have some 
important limitations. First, they typically 
sequence only a small fragment of RNA 
from the 3′ end of the transcript, which 
enables accurate counting of gene transcripts 
but provides little insight into the specific 
isoform sequences in cells. Examples 
abound of how different splice forms of 
genes can radically alter the biology of a 
cell, even having opposing effects on cell 
function. Second, relatively little attention 
has been paid by academic labs to increasing 
the sensitivity of transcript detection above 
the ~5–20% efficiency of the most widely 
used methods. Sensitivity therefore lags that 
of other nucleic-acid detection strategies, 
most notably single-molecule fluorescence 
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Fig. 1 | Smart-seq3 capture of isoform-specific expression. a, The Smart-seq3 workflow. Dissociated cells are individually deposited into the wells of 
a microtiter plate using a flow cytometer, where they are lysed and release RNA (inset). Reverse transcription with 5′ end template switching (TS-RT) 
is performed using a highly optimized reagent mix. The template switch reaction affixes a randomer (orange) to the 5′ end of the transcript. After PCR 
amplification, from each cell, two libraries are sequenced: first, a library of 5′ ends (top) to digitally count the number of gene transcripts; second, the internal 
reads (bottom) that enable the full reconstruction of gene isoforms expressed in that cell. The result is a matrix of integer counts of each isoform in each 
cell. b, Applications of Smart-seq3-mediated single-cell isoform counting. Smart-seq3 profiling of cells with heterozygous genomes enables allele-specific 
transcript counting (1) to study burst kinetics and splicing (2) and identify regulatory variants influencing transcriptional phenotypes (levels, splicing, and so 
forth) within individual cell types (3).

NATURE BIOTECHNOLOGY | VOL 38 | JUNE 2020 | 697–700 | www.nature.com/naturebiotechnology

TakaraBio

Macosko; Nature BiotechNology | VOL 38 | JuNe 2020 | 697–700 

M Hagemann-Jensen et al, Single-cell RNA counting at allele- and isoform-resolution using Smart-seq3 bioRxiv 2019

• Plate-based- individual cells are sorted into 
single well

• Gives full transcript information. Isoform 
detection is possible.

• Sensitivity is high.

• Sequencing is costly.



MICROFLUIDIC DROPLET
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© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900188 (14 of 28)

Interestingly, Drop-seq technology has also been adapted to 
analyze single nuclei gene expression (single nuclei droplet-
based sequencing: snDrop-seq).[91] The only modification is 
related to the sample preparation since in snDrop-seq single-
nuclei instead of single cells are encapsulated in droplets with 
barcoding beads, allowing for the capture of nuclear-polyade-
nylated mRNA transcripts as well as pre-mRNAs.

In addition, Drop-seq has also been modified to allow simul-
taneous measurement of the transcriptome and a few targeted 
RNA amplicons (droplet-assisted RNA targeting by single-cell 
sequencing: DART-seq).[122] In this case, custom primers are 
enzymatically attached to a subset of poly(dT) tailed primers on 
the Drop-seq barcoding beads and subsequently, the Drop-seq 
protocol can be used unaltered.

6.1.3. Hi-SCL

High-Throughput Single-Cell Labeling (Hi-SCL) was devel-
oped by Weitz lab in 2015 contemporarily to inDrop and Drop-
seq.[123] Hi-SCL encapsulates single-cells in droplets with lysis 
buffer. In parallel, barcoding water-in-oil droplets are prepared 
by emulsifying ≈109 barcodes per droplet, similarly to Drop-
ChIp (Section 5.2.1). After cell lysis, the droplets containing the 
single-cell content are fused by electrocoalescence together with 
two additional droplets: one containing the barcoding DNA 
primers and one containing the RT mix. Upon RT, single-cell 
barcoded cDNA is produced by exploiting the annealing of the 
poly(dT) tail of the barcoding primers with the poly(A) tail of 
the mRNA. The droplets are then de-emulsified, the cDNA is 

Adv. Biosys. 2019, 1900188

Figure 9. Comparison of droplet microfluidic single-cell transcriptome workflows. a) inDrop, b) Drop-seq, c) Single Cell Gene Expression 3’ (10X 
Genomics). R1: read 1. R2: read 2.

MICROWELL
Scanner

Rhapsody 
Express

Cartridge:
200k+ microwells

• Magnetic bead with immobilized 
oligos

• Real-time cell count, viability, true 
doublet rate

• Supports scRNAseq and multiome
• Single cell and nuclei

• Barcoding inside the droplet
• Supports a plethora of applications- 

scRNAseq, multiome, CRISPR screening
• Single cell, nuclei or fixed cells



COMBINATORIAL BARCODING
SPLiT-seq (Split-pool ligation-based transcriptome 

sequencing)

Rosenberg et. al; SCIENCE, Vol. 360, Issue 6385, pp. 176-182

• Combinatorial barcoding by in-situ ligation
• Supports  scRNA-seq and CRISPR screening
• Fixed cells and nuclei

Hatori et. al; Anal Chem. 2018 Aug 21; 90(16): 9813–9820.

MICROFLUIDIC-FREE 
DROPLET

PIP-seq (Pre-templated Instant Partitions)

• Barcoding inside the droplet
• Supports scRNA-seq
• Single cell and nuclei

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122844/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122844/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122844/


CARDIAC TISSUE PROFILING USING ICELL8

Wang et. Al; Nature CELL BIOLOGY | VOL 22 | JANUARY 2020 | 108–119 

• Tissue type- normal adult human heart

• Both cardiomyocytes and non-
cardiomyocytes

• ~2000 genes per cell were detected

• ~7500 cells profiled

• Median sequencing depth- ~300,000 
reads per cell

Advertisement

nature  nature cell biology  resources  article  figure

Fig. 1: Overview of the cell composition of the normal adult human heart.

From: Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function

a, Schematic of the study design and workflow. Cells isolated from the LA or the LV were stained with Hoechst and propidium iodide (PI) before selection.

Live single cells (Hoechst ; PI ) were identified using the Nanowell imaging system, and were selected for subsequent experiments. b, Representative

images of the morphology, viability and marker-gene expression of CMs isolated from the LA and LV. Calcein and ethidium staining was used to label live

and dead CMs immediately after isolation. Scale bars, 100 μm (bright field); 200 μm (calcein and ethidium staining); 20 μm (immunofluorescence staining

of ACTN2). The images are representative of three independent experiments that yielded similar results. c, t-SNE clustering of 7,495 single cells isolated

from both the LA and LV. Each dot represents a single cell. Cell populations were identified by the expression of known marker genes. CM, cardiomyocyte;

EC, endothelial cell, FB, fibroblast; MP, macrophage; SMC, smooth muscle cell. d, Heat map showing DEGs in each cell type. Source data are available online.

Source data

Back to article page

View all journals Search Log in

Sign up for alerts RSS feedExplore content About the journal Publish with us

a

LAtissue

Digestion

LVtissue

Digestion

CM-enricheddigest

Onecell Nocell

Regulardigest

Single-cellsuspensions

Mutiple
cells

Dead
cell

CM-enricheddigest Regulardigest

Hoechst

PI

40

Single-cellselectionandRNA-seq
15-

1-
SN
E_
2

-10-

ことのいるる
†SNE_1

20

t-
S
N
E2

-20

-40

-25

Cluster:•CM •EC •FB

25
t-SNE1

•MP •SMC

b

Bright CalceinEthidium

LACMs

LVCMs

CM EC

0
-
N

-1

-2

ACTN2DAPI

FBMPSMC

ATTN
,MYH7
,MYH6
•TNNT2

VWF
•IF127

PECAM1

,DCN
•C7
LUM

•FBLN1
COL1A2

•PTPRC

-CD163

CCL4

•CXCL8

ACTA2
CALD1
MYH11

+ −

Nature Cell Biology (Nat Cell Biol)  ISSN 1476-4679 (online)  ISSN 1465-7392 (print)

About Nature Portfolio

About us

Press releases

Press office

Contact us

Discover content

Journals A-Z

Articles by subject

Protocol Exchange

Nature Index

Publishing policies

Nature portfolio policies

Open access

Author & Researcher services

Reprints & permissions

Research data

Language editing

Scientific editing

Nature Masterclasses

Research Solutions

Libraries & institutions

Librarian service & tools

Librarian portal

Open research

Recommend to library

Advertising & partnerships

Advertising

Partnerships & Services

Media kits

Branded content

Professional development

Nature Careers

Nature Conferences

Regional websites

Nature Africa

Nature China

Nature India

Nature Italy

Nature Japan

Nature Korea

Nature Middle East

Privacy Policy  Use of cookies  Your privacy choices/Manage cookies Legal notice  Accessibility statement  Terms & Conditions

Your US state privacy rights

© 2024 Springer Nature Limited

Advertisement

nature  nature cell biology  resources  article  figure

Fig. 1: Overview of the cell composition of the normal adult human heart.

From: Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function

a, Schematic of the study design and workflow. Cells isolated from the LA or the LV were stained with Hoechst and propidium iodide (PI) before selection.

Live single cells (Hoechst ; PI ) were identified using the Nanowell imaging system, and were selected for subsequent experiments. b, Representative

images of the morphology, viability and marker-gene expression of CMs isolated from the LA and LV. Calcein and ethidium staining was used to label live

and dead CMs immediately after isolation. Scale bars, 100 μm (bright field); 200 μm (calcein and ethidium staining); 20 μm (immunofluorescence staining

of ACTN2). The images are representative of three independent experiments that yielded similar results. c, t-SNE clustering of 7,495 single cells isolated

from both the LA and LV. Each dot represents a single cell. Cell populations were identified by the expression of known marker genes. CM, cardiomyocyte;

EC, endothelial cell, FB, fibroblast; MP, macrophage; SMC, smooth muscle cell. d, Heat map showing DEGs in each cell type. Source data are available online.

Source data

Back to article page

View all journals Search Log in

Sign up for alerts RSS feedExplore content About the journal Publish with us

a

LAtissue

Digestion

LVtissue

Digestion

CM-enricheddigest

Onecell Nocell

Regulardigest

Single-cellsuspensions

Mutiple
cells

Dead
cell

CM-enricheddigest Regulardigest

Hoechst

PI

40

Single-cellselectionandRNA-seq
15-

1-
SN
E_
2

-10-

ことのいるる
†SNE_1

20

t-
S
N
E2

-20

-40

-25

Cluster:•CM •EC •FB

25
t-SNE1

•MP •SMC

b

Bright CalceinEthidium

LACMs

LVCMs

CM EC

0
-
N

-1

-2

ACTN2DAPI

FBMPSMC

ATTN
,MYH7
,MYH6
•TNNT2

VWF
•IF127

PECAM1

,DCN
•C7
LUM

•FBLN1
COL1A2

•PTPRC

-CD163

CCL4

•CXCL8

ACTA2
CALD1
MYH11

+ −

Nature Cell Biology (Nat Cell Biol)  ISSN 1476-4679 (online)  ISSN 1465-7392 (print)

About Nature Portfolio

About us

Press releases

Press office

Contact us

Discover content

Journals A-Z

Articles by subject

Protocol Exchange

Nature Index

Publishing policies

Nature portfolio policies

Open access

Author & Researcher services

Reprints & permissions

Research data

Language editing

Scientific editing

Nature Masterclasses

Research Solutions

Libraries & institutions

Librarian service & tools

Librarian portal

Open research

Recommend to library

Advertising & partnerships

Advertising

Partnerships & Services

Media kits

Branded content

Professional development

Nature Careers

Nature Conferences

Regional websites

Nature Africa

Nature China

Nature India

Nature Italy

Nature Japan

Nature Korea

Nature Middle East

Privacy Policy  Use of cookies  Your privacy choices/Manage cookies Legal notice  Accessibility statement  Terms & Conditions

Your US state privacy rights

© 2024 Springer Nature Limited

RESOURCE NATURE CELL BIOLOGY

Although the LV and the RV seem to resemble each other at the 
level of subcluster distribution (Extended Data Fig. 2d,e), we 
observed a considerable number of differentially expressed genes 
(DEGs) between these two chambers (Extended Data Fig. 2f). LV 
CMs displayed functional enrichment in biological behaviours 

related to oxidative phosphorylation, cardiac muscle contraction 
and circadian rhythm; by contrast RV CMs exhibited enrichment in 
signalling pathways such as protein processing in the ER (Extended 
Data Fig. 2g). These molecular differences may underlie distinct 
functional requirements of the two ventricles.
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Fig. 2 | Heterogeneity of inter- and intracompartmental CMs. a,b, t-SNE clustering of 3,894 CMs isolated from both LV and LA. Cells were marked by 
cluster number (a) or tissue source (b). c, Co-staining of ACTN2 and either PDK4 or ACTA2 in LA sections showing LA1 and LA2 subtypes, respectively. 
d, Co-staining of ACTN2 and either SPP1 or NFKBIA in LV sections showing LV1 and LV3 subtypes, respectively. For c and d, the white arrows indicate 
co-localized CMs and the yellow arrows indicate ACTN2+-only CMs. Scale bars, 25!μm (left); 10!μm (right three images). The images in c and d represent 
four and three independent experiments (three samples each), respectively. e, Heat map of 424 DEGs in LV-specific, LA-specific and AV-shared CM 
subpopulations; n!=!3,894 cells. Source data are available online. f, Selected top categories from GO enrichment analysis of DEGs. g–i, Heat maps showing 
the expression of genes related to contraction (g), metabolism (h), and secretion and membrane (i) in LV-specific, LA-specific and AV-shared CM 
subpopulations; n!=!3,894 cells.
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Although the LV and the RV seem to resemble each other at the 
level of subcluster distribution (Extended Data Fig. 2d,e), we 
observed a considerable number of differentially expressed genes 
(DEGs) between these two chambers (Extended Data Fig. 2f). LV 
CMs displayed functional enrichment in biological behaviours 

related to oxidative phosphorylation, cardiac muscle contraction 
and circadian rhythm; by contrast RV CMs exhibited enrichment in 
signalling pathways such as protein processing in the ER (Extended 
Data Fig. 2g). These molecular differences may underlie distinct 
functional requirements of the two ventricles.
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d, Co-staining of ACTN2 and either SPP1 or NFKBIA in LV sections showing LV1 and LV3 subtypes, respectively. For c and d, the white arrows indicate 
co-localized CMs and the yellow arrows indicate ACTN2+-only CMs. Scale bars, 25!μm (left); 10!μm (right three images). The images in c and d represent 
four and three independent experiments (three samples each), respectively. e, Heat map of 424 DEGs in LV-specific, LA-specific and AV-shared CM 
subpopulations; n!=!3,894 cells. Source data are available online. f, Selected top categories from GO enrichment analysis of DEGs. g–i, Heat maps showing 
the expression of genes related to contraction (g), metabolism (h), and secretion and membrane (i) in LV-specific, LA-specific and AV-shared CM 
subpopulations; n!=!3,894 cells.
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CARDIAC TISSUE PROFILING USING SPLiT-SEQ

• Sample type- Human iPSC-derived 
cardiomyocytes

• Time-point study- Cells from a 
total of 55 samples from multiple 
independent differentiation 
experiments with 4 different cell 
lines, 2 differentiation protocols

• 4 time-points

• ~12,000 cells were clustered here

• Expected seq depth- Min. 20,000 
reads per cell
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Neutrophil profiling using multiple scRNA-seq methods
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BD Rhapsody

consistent with a progenitor status,19 while N5R neutrophils ex-
pressed the highest levels of CD62L (p = 5.29e!93), a protein
involved in neutrophil adhesion and extravasation (Figure 3D
and Table S4).

The neutrophil population structure was similarly defined in
both datasets (Seq-well and BD Rhapsody) when overlaying
the top 20 genes for each cluster (Figures S4E–S4G). Impor-
tantly, when comparing the transcriptomic differences in the
neutrophil states between control and COPD patients from the
test (Seq-well) and validation (BD Rhapsody) cohorts, we
observed similar patterns. These included the significant upre-
gulation in COPD patients of cell movement-related VIM and
the HLA molecule HLA-B in N3R neutrophils (Figure S4G and
Table S4). Similarly, N4R neutrophils upregulated HLA-C and
N5R neutrophils overexpressed alarmins (S100A12) (Figure S4G
and Table S4).

The altered molecular phenotype of blood neutrophils in
COPD was further supported by increase in cell-surface activa-
tion markers, such as the adhesion markers CD15 (p = 3.26e!8;
N3R), CD66B (p = 0.026; N4R), and CD62L (p = 0.0007; N5R)
(Figure 3E and Table S4). Collectively, molecular deviations
observed for blood neutrophil states in early-stage COPD are
mirrored by changes in the expression of surface proteins
involved in neutrophil functions. Thus, in two independent co-
horts, we identified subsets of blood neutrophils with unique
gene expression patterns using two different scRNA-seq
technologies.

BALF neutrophil states overlap with blood neutrophil
deviations in COPD
As COPD is a pulmonary disease with systemic responses and
co-morbidities, we next asked whether the changes observed
in blood neutrophils are linked to changes in neutrophils from
BALF,whichwould facilitate patientmonitoring and stratification.
We examined BALF from six controls and seven GOLD2 COPD
patients using the Seq-well technology to define the cellular
changes in early-stage COPD (Figure 4A). Dimensionality reduc-
tion and clustering revealed three BALF neutrophil clusters that
were present in all donors and had comparable transcript counts
(Figures 4B and S5A–S5C): N1bal (CXCL8, SOD2, TNFAIP6),
N2bal (MNDA, SYNE2, SMCHD1), and N3bal neutrophils
(FCGR3B, S100A8, S100A9, IFITM2) (Figure 4C and Table S5).
N1bal neutrophils were enriched in interleukin signaling (Fig-
ure S5D), N2bal neutrophils featured genes related to influenza
virus infection and translation (Figure S5E), whereas the N3bal
neutrophil state was characterized by gene signatures of neutro-
phil degranulation, TLR cascades, and antigen presentation (Fig-
ure S5F). The frequencies of the three identified neutrophil states
were comparable between control and COPD patients (Fig-
ure 4D). Pathway analysis on DE genes derived from all BALF
neutrophils between control and COPD patients defined degran-
ulation and TLR cascade signaling to be upregulated in COPD
BALF neutrophils, while metabolism of amino acids, translation,
signaling by RHO GTPases, and signaling via SLIT and Round-
about (ROBO) proteins was downregulated (Figure 4E).

A B C

D E

Figure 3. Neutrophil transcriptional states from control and COPD patients correspond to distinct phenotypes
(A) Experimental design and analysis pipeline.

(B) UMAP representation of 4,072 neutrophils from three controls and three COPD patients.

(C) Heatmap of the top 5 marker genes for each neutrophil state. Each column represents the scaled average normalized expression per patient.

(D) Violin plots of neutrophil state-specific protein markers.

(E) Violin plots of differentially expressed protein markers between control and COPD patients for blood neutrophil states. Statistical analysis was performed with

the MAST algorithm, *p < 0.05, ***p < 0.001.
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Figure 5. A murine model of cigarette smoke (CS)-induced COPD recapitulates the human blood neutrophil population structure
(A) Experimental design and sample processing.

(B) UMAP representation of 33,577 CD45+ cells from the blood of four air- and four CS-exposed mice.

(C) Dot plot of top 5 differentially expressed (DE) genes for each identified blood neutrophil cluster against the rest. Circle size represents the percentage of cells

within a cluster that express a particular gene, circle color shows average gene expression within the cluster.

(D) UMAP representation of 10,181 blood neutrophils from four air- and four CS-exposed mice.

(E) Heatmap of the top 20 unique genes from the n1b murine blood neutrophil population from the Xie et al.15 data on the blood neutrophil states of this study.

(F) Heatmap of the top 20 unique murine blood neutrophil genes for the human neutrophil states from Figure 2. Murine genes were first converted to their human

homologs.

(G) UMAP representation of 3,068 mature blood neutrophils from this study.

(H) Heatmap of the top 20 unique murine blood neutrophil state genes for the mature human neutrophil states from Figure 2. Murine genes were first converted to

their human homologs.

(I) Gene set enrichment analysis of DE genes between air- and smoke-exposed mice in the blood n1b neutrophil state using the Reactome database.
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KEY CONSIDERATIONS FOR CHOOSING A TECHNOLOGY
• Biological question/ experimental design
• Sample type- fresh/frozen/fixed; single cell or nuclei
• Assay type- single cell or multiome or immune profiling
• Cell type of interest- cell size, fragility of cells etc.
• Do you need full length transcript information? Long-read 

sequencing is an option
• Scale
• How many sample?
• How many cells per sample?
• Is it a low input sample?

• Cost
• Rarer the cell type of interest, more cells one needs to profile
• Is sample pooling an option?
• Sequencing depth
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HIGH SAMPLE QUALITY
• High viability

Ø More than 90% viability is ideal.
Ø Cell membrane integrity is required until they are encapsulated.

• Good single cell suspension. No clumps.
• Clean prep with little or no debris.

Nanowell-based barcoding platform Droplet-based barcoding platform
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TRANSCRIPTOME IS STRESS-SENSITIVE

NATURE METHODS | VOL.14 NO.10 | OCTOBER 2017 | 935

CORRESPONDENCE

Single-cell sequencing reveals 
dissociation-induced gene expression in 
tissue subpopulations

To the Editor: In many gene expression studies, cells are extract-
ed by tissue dissociation and fluorescence-activated cell sorting 
(FACS), but the effect of these protocols on cellular transcriptomes 
is not well characterized and is often ignored. Here, we applied sin-
gle-cell mRNA sequencing (scRNA-seq) to muscle stem cells, and 
we found a subpopulation that is strongly affected by the widely 
used dissociation protocol that we employed. One implication of 

this finding is that several published transcriptomics studies may 
need to be reinterpreted. Importantly, we detected similar subpopu-
lations in other single-cell data sets, suggesting that cells from other 
tissues may be affected by this artifact as well.

Regeneration of skeletal muscles in adults depends on the acti-
vation of otherwise quiescent muscle stem cells, the satellite cells 
(SCs)1. The quiescent SC population is considered to be hetero-
geneous1,2. We sequenced single SCs that we extracted from 
 uninjured tibialis anterior (TA) muscles of Pax7nGFP mice with a 
widely used2–4 dissociation protocol to characterize their heteroge-
neity in more detail (Supplementary Fig. 1a–e and Supplementary 
Methods). After dissociation and FACS, we applied scRNA-seq 
(CEL-Seq)5, and we identified two subpopulations in the data 
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Figure 1 | Widely used tissue dissociation protocol induces transcriptional changes in a subpopulation of satellite cells. (a) Heatmap (inset) showing 
transcriptome correlations of 235 freshly isolated single-cell sequenced SCs and scatterplot showing genes that are differentially expressed between the 
two identified subpopulations. Significant genes are labeled in red (P < 0.001); P values were calculated using negative binomial distribution as previously 
described (Supplementary Methods) and were corrected for multiple testing by the Benjamini-Hochberg method; n = 178 and 57 cells for cluster 1 and 
2, respectively. Red and blue colors in heatmap represent 1 – Pearson correlation values of 0 and 1, respectively. (b) Cryosection of SC in intact (all Fos 
negative; n = 80) and dissociated (right; Fos detected in 27 out of the 75 SCs) muscles that were stained for Fos (green) and Pax7 (magenta) RNA using 
smFISH. Blue, nuclei, DAPI; scale bar, 5 µm. (c) Genes that are differentially expressed between 1-h and 2-h collagenase-treated SCs. P values calculated 
as in a, with n = 272 and 223 cells for 1-h and 2-h collagenase-treated cells, respectively. (d) MitoTracker and FSC-H levels of 284 MitoTracker-stained SCs. 
Dissociation-affected cells (red) were identified by SORT-seq; NOT-gate (gray) was designed based on a pilot study (Supplementary Fig. 7). (e) Average 
expression levels of Fos, Jun and Hspa1b in all cells (magenta) and after removing the cells that fall in the NOT-gate (green). Box plots: center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers.

Single molecule FISH analysis shows that 
Fos expression is induced during the SC 
isolation procedure. 
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CORRESPONDENCE

Single-cell sequencing reveals 
dissociation-induced gene expression in 
tissue subpopulations

To the Editor: In many gene expression studies, cells are extract-
ed by tissue dissociation and fluorescence-activated cell sorting 
(FACS), but the effect of these protocols on cellular transcriptomes 
is not well characterized and is often ignored. Here, we applied sin-
gle-cell mRNA sequencing (scRNA-seq) to muscle stem cells, and 
we found a subpopulation that is strongly affected by the widely 
used dissociation protocol that we employed. One implication of 

this finding is that several published transcriptomics studies may 
need to be reinterpreted. Importantly, we detected similar subpopu-
lations in other single-cell data sets, suggesting that cells from other 
tissues may be affected by this artifact as well.

Regeneration of skeletal muscles in adults depends on the acti-
vation of otherwise quiescent muscle stem cells, the satellite cells 
(SCs)1. The quiescent SC population is considered to be hetero-
geneous1,2. We sequenced single SCs that we extracted from 
 uninjured tibialis anterior (TA) muscles of Pax7nGFP mice with a 
widely used2–4 dissociation protocol to characterize their heteroge-
neity in more detail (Supplementary Fig. 1a–e and Supplementary 
Methods). After dissociation and FACS, we applied scRNA-seq 
(CEL-Seq)5, and we identified two subpopulations in the data 
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Figure 1 | Widely used tissue dissociation protocol induces transcriptional changes in a subpopulation of satellite cells. (a) Heatmap (inset) showing 
transcriptome correlations of 235 freshly isolated single-cell sequenced SCs and scatterplot showing genes that are differentially expressed between the 
two identified subpopulations. Significant genes are labeled in red (P < 0.001); P values were calculated using negative binomial distribution as previously 
described (Supplementary Methods) and were corrected for multiple testing by the Benjamini-Hochberg method; n = 178 and 57 cells for cluster 1 and 
2, respectively. Red and blue colors in heatmap represent 1 – Pearson correlation values of 0 and 1, respectively. (b) Cryosection of SC in intact (all Fos 
negative; n = 80) and dissociated (right; Fos detected in 27 out of the 75 SCs) muscles that were stained for Fos (green) and Pax7 (magenta) RNA using 
smFISH. Blue, nuclei, DAPI; scale bar, 5 µm. (c) Genes that are differentially expressed between 1-h and 2-h collagenase-treated SCs. P values calculated 
as in a, with n = 272 and 223 cells for 1-h and 2-h collagenase-treated cells, respectively. (d) MitoTracker and FSC-H levels of 284 MitoTracker-stained SCs. 
Dissociation-affected cells (red) were identified by SORT-seq; NOT-gate (gray) was designed based on a pilot study (Supplementary Fig. 7). (e) Average 
expression levels of Fos, Jun and Hspa1b in all cells (magenta) and after removing the cells that fall in the NOT-gate (green). Box plots: center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers.
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Dissociation time experiment confirms that 
the dissociation procedure influences the 
transcriptome of SCs. 

Van Den Brink et.al; Nature Methods volume 14, pages935–936(2017)

https://www-nature-com.ezp-prod1.hul.harvard.edu/nmeth
https://www-nature-com.ezp-prod1.hul.harvard.edu/nmeth


SAMPLE PREPARATION
• Enzyme-based dissociation- trypsin, 

collagenase, liberase, accutase.
• Gentle washes.
• Dead cell removal kit, filtering out the 

debris.
• Density gradient (Ficoll, Optiprep)

• Magnetic bead 
selection

• FAC sorting 
(Stain for 
viability)

• Cell conc.
• Cell buoyancy
• Viability (Dapi/ 

Trypan blue)

Solid tissue

Adherent cell culture

Suspended cell culture

Liquid tissue

Dissociation

Enrichment Quality check



FACS (Fluorescence activated cell 
sorting)

Pros: 
• Enrichment is robust. Can be really 

useful for rare population of cells.
• Yields good single cell suspension.
• Live/dead sorting by DNA stains, eg. 

DAPI.

Cons:
• Uses high pressure to sort the cells, 

therefore can be pretty harsh.
• Can introduce bias in the experiment. 

Using a broad marker is recommended.
• Long sample prep protocol.

MACS (Magnetic-activated cell sorting)

Pros:
• Gentle on cells.  
• Fast protocol.
• Greater number of cells can be 

processed at a time.
• Not limited by FAC sorter availability.

Cons:
• Number of available surface marker-

conjugated to magnet is limited.
• Enrichment is not precise. Not 

applicable for rare population.

ENRICHMENT METHODS: PROS & CONS



SAMPLE PREP CHALLENGES & SOLUTIONS

Single Cell

PROS
• Superior data quality
CONS
• Time-consuming and 

time-sensitive
• Limits the number of 

samples that can be run
• Achieving high cell 

viability is challenging

Single Nuclei

PROS
• Faster protocol
• Amenable for complex 

experimental design
CONS
• Challenging
• Presence of debris
• Counting is challenging
• Not compatible for 

certain cell population.

Fixed samples

PROS
• Simplifies experimental 

design involving many 
samples

• Choice of fixative 
depends on 
experimental goals

CONS
• High cell loss



SAMPLE PREPARATION VARIES BY QUESTION

Andrews et. al; bioRxiv; https://doi.org/10.1101/2021.03.27.436882 
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Fig. 2 20 distinct cell populations were revealed in healthy human livers. a Viable cells were identified from the single-cell libraries having a minimum
library size of 1500 transcripts and a maximum of 50% mitochondrial transcript proportion. b t-SNE projection of 8444 liver cells (each point represents a
single cell). Cells are colored by library size, with darker colors indicating larger libraries. c t-SNE projection where cells that share similar transcriptome
profiles are grouped by colors representing unsupervised clustering results. d Heat map analysis using known gene expression profiles of hepatocytes/
immune cells. The identity of each cluster was assigned by matching the cluster expression profile with established cell-specific marker gene expression for
hepatocytes, endothelial cells, cholangiocytes, and immune cells. e Cell-cycle phase prediction showed that hepatocyte clusters were less proliferative than
immune cell clusters. f Cluster map showing the assigned identity for each cluster defined in c. The cluster number of each potential cell population is
indicated in parentheses. DE: differentially expressed, MACs: macrophages, PCA: principal component analysis, t-SNE: t-distributed stochastic neighbor
embedding, PCs: principal components
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scRNA-seq

• All major hepatic cell types were represented in both 
scRNA-seq and snRNA-seq, but were captured at different 
frequencies.

• Cholangiocytes and parenchymal cells were 
underrepresented.

• Immune cells were more easily detected in the single cell 
prep.

Figures and Figure Legends:
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snRNA-seq

Figures and Figure Legends:
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• SnRNA-seq captured a greater diversity of genes 
than scRNA-seq- high proportion of UMIs in 
scRNA-seq data are derived from transcripts 
encoding ribosomal proteins and genes 
encoded in the mitochondrial genome, which 
are not present in snRNA-seq data 

• scRNA and snRNA don’t cluster together due to 
the systemic difference between the RNA found 
in the nucleus vs in the cytoplasm. Also the 
preparation methods for these two are different.

Figures and Figure Legends:
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DIFFERENT APPROACHES FOR BARCODING
3’ Capture 5’ Capture Probe-based

Inside Individual GEMs - Gene Expression Primer
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Read 1 sequence (read 1 sequencing primer),  (ii) a 16 nt 10x Barcode, (iii) a 
12  nt unique molecular identifier (UMI), and (iv) a 13 nt template switch oligo 
(TSO) are released and mixed with both the cell lysate and a Master Mix 
containing reverse transcription (RT) reagents and poly(dT) primers. 

Gel Bead

The cell lysate and the released Gel Bead primer incubated with the Master 
Mix containing RT  reagents, produce 10x Barcoded, full-length cDNA from 
poly-adenylated mRNA.

Inside Individual GEMs

cDNA from Poly-adenylated mRNA

Step 2: Post GEM-RT Cleanup & cDNA Amplification
GEMs are broken and pooled after the GEM-RT reaction mixtures are 
recovered. Silane magnetic beads are used to purify the 10x Barcoded first-
strand cDNA from the post GEM-RT reaction mixture, which includes leftover 
biochemical reagents and primers. 10x Barcoded, full-length cDNA is 
amplified via PCR with primers against common 5' and 3' ends added during 

User Guide | Chromium GEM-X Single Cell 5' Reagent Kits v3 CG000733 | Rev A

Introduction   10xgenomics.com     16

Step 1: Probe Hybridization
The whole transcriptome probe pairs, consisting of a left hand side (LHS) and a 
right hand side (RHS) for each targeted gene, are added to the fixed sample. 
Together, probe pairs hybridize to their complementary target RNA  in an 
overnight incubation. 

Step 2: Post-Hybridization Washing
After hybridization, the  unbound probes are washed off.  

Step 3:  GEM Generation & Barcoding
GEMs are generated by combining barcoded Gel Beads, a Master Mix 
containing cells, and Partitioning Oil B onto GEM-X FX Chip. Immediately 
following GEM generation, the  Gel Bead is dissolved, releasing the barcoded 
Gel Bead primers, and   any co-partitioned cell is lysed. Gel Bead primers 
contain a partial TruSeq Read 1 sequence (partial Read 1T, read 1 sequencing 
primer), a 16 nt 10x GEM Barcode (or 10x Barcode), a 12 nt unique molecular 
identifier (UMI), and partial Capture Sequence 1 (sequence complementary to 
the probe). 
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Inside Individual GEMs 

 

Finally, a heat denaturation step inactivates the enzymes in the GEM reaction.

Step 4: GEM Recovery & Pre-Amplification
Once the ligation and barcoding steps are completed, the GEMs are broken by 
the addition of Recovery Agent, inverting the mixture, and removing the 
Recovery Agent.  A PCR master mix is added directly to the post-GEM aqueous 
phase to pre-amplify the ligated & extended products. The pre-amplified 
products are then cleaned up by SPRIselect.

DNA Pre-Amplification - Gene Expression
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The most common approach for 
studying single cell biology

Applicable for immune cell 
profiling including VDJ 
recombination and CRISPR

Compatible with fixed cells/nucleihttps://www.10xgenomics.com



SEQUENCING BY SYNTHESIS (ILLUMINA)

Illumina: Sequencing by Synthesis
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Number of clusters = Number of reads
Number of cycles = Length of reads

Illumina: Sequencing Platforms

https://www.illumina.com/systems/sequencing-platforms.html

Illumina: Sequencing Platforms

https://www.illumina.com/systems/sequencing-platforms.html



THROUGHPUT & SEQUENCING DEPTH
The answer is not simple! It depends!

• Two questions:
• How rare is the cell type of interest?

• Does it have highly expressed markers?

• Rule of thumb: 50-100 cells with unique transcriptome signature is necessary 
for forming a distinct cluster in a t-SNE plot.

• Rare cell type of your interest- need to analyze many cells.

• For overall heterogeneity- fewer cells might be enough.

• Sequencing depth- rarer the transcript, higher should be the sequencing depth. 
Also depends on the RNA content of the cells.



CHALLENGE: BATCH EFFECT
Batch effect represents systematic variation in data, gene expression in this case, resulting from non-
biological sources.
Sources

• Sample prep
• Animals from different clutches/ litters
• Different batches of reagents
• Operator
• Library prep performed at different time
• Different sequencing run

Solution
• Wet-lab solution- careful experimental design

• Use biological replicates. Standard statistical considerations apply. This can become expensive.
• Same reagent batch, if possible
• Keeping the operator same
• Prepping libraries and sequencing together
• Pooling of samples by sample barcoding (hashtagging/ MULTI-seq)

• Dry-lab solution
• Sometimes batch effects are unavoidable- patient samples, time-course experiments, perturbation 

experiments
• Batch effect correction works best when individual samples contain sufficient internal complexity to 

identify shared sources of transcriptional variation



BEST PRACTICES FOR scRNA-SEQ EXPERIMENT
• Good sample prep is the KEY to success.

• Do not rush to the final experiment. Protocol optimization is necessary.

• A well-planned pilot experiment is essential for evaluating sample 
preparation and other parameters like number of cells, sequencing depth etc.

• Include biological replicates.

• Process drug/ treatment/ mutant and control on the same day.

• Randomize the order of samples, if running on different days.

• Library prep could be a major source of batch effect. All libraries should be 
prepared together.



THANK YOU


