

Aligning reads: tools and theory

Assembly Reads Trinity, Scripture Assembly into transcripts **Trinotate** Novel transcript

annotation

Former "standard" approach for quantifying gene expression

• **Genome** assembly gives us the nucleotide sequence of the reference genome.

- Genome assembly gives us the nucleotide sequence of the reference genome.
 - It is in the form of a Fasta file

- Genome assembly gives us the nucleotide sequence of the reference genome.
 - It is in the form of a Fasta file
 - **Genome build/release** represents a version of the genome with improvements (i.e. gaps filled, mistakes corrected).

- Genome assembly gives us the nucleotide sequence of the reference genome.
 - It is in the form of a Fasta file
 - **Genome build/release** represents a version of the genome with improvements (i.e. gaps filled, mistakes corrected).
- Transcriptome gives us the complete set of transcripts

- Genome assembly gives us the nucleotide sequence of the reference genome.
 - It is in the form of a Fasta file
 - **Genome build/release** represents a version of the genome with improvements (i.e. gaps filled, mistakes corrected).
- Transcriptome gives us the complete set of transcripts
 - It is in the form of a GTF (gene transfer format) file

Reference data versions matter

- Make sure that all reference files used in an analysis are matched (i.e. genome file (FASTA), transcriptome file (FASTA, GTF)
 - Same build version
 - Same source (e.g. both from FlyBase)

Goal: Finding where in the genome these reads originated from

A simple case of string matching

A simple case of string matching?

Non-comprehensive list of challenges

- Large, incomplete and repetitive genomes
- Short reads: 50-150 bp
 - Non-unique alignment
 - Sensitive to non-exact matching (variants, sequencing errors)
- Massive number of short reads
- Small insert size: 200-500 bp libraries
- Compute capacity for efficient base-to-base mapping

Splice-aware alignment

Splice-aware alignment

Splice-aware alignment

The current standard for quantifying gene expression

Why use lightweight alignment?

- Approaches avoid base-to-base alignment
- Faster, more efficient (~ >20x faster than alignment-based)
- Improved accuracy for transcript-level quantification
- Improvements in accuracy for gene-level quantification**
- Tools include: <u>Kallisto</u> (quasi-aligner), <u>Sailfish</u> (kmer-based),
 <u>Salmon</u> (quasi-aligner), RSEM

**doi: <u>10.12688/f1000research.7563.2</u>

How does Salmon map reads?

Lightweight alignment and quantification using Salmon

Lightweight alignment and quantification using Salmon

Reference = FASTA file of all transcriptsequences for the organism

Transcriptome reference file

- Mapping results are only as good as the quality of the reference transcriptome
- If one does not exist, it can be created using coordinates from a GTF file and the genome sequence file
- Reference data versions matter!
 - Stay consistent with the source and builds/releases being used

Lightweight alignment and quantification using Salmon

- Reference = FASTA file of all transcriptsequences for the organism
- Reference Index: (2 components)
 - Suffix array
 - Hash table (mapping each transcript to its location in the SA)

Building an index

- Having an index of the reference sequence provides an efficient way to search
- Once index is built, it can be queried any number of times
- Every genome or transcriptome build requires a new index for the specific tool in question.

Commonly used indexing methods

- Hash-based (Salmon, Kallisto)
- Suffix arrays (Salmon, STAR)
- Burrows-Wheeler Transform (BWA, Bowtie2)

Commonly used indexing methods

- Hash-based (Salmon, Kallisto)
- Suffix arrays (Salmon, STAR)
- Burrows-Wheeler Transform (BWA, Bowtie2)

Hash-based alignment (circa 1990)

- Pick k-mer size, build lookup of every k-mer in the reference mapped to its positions (the index)
- Break the query into k-mers
- Seed-and-extend strategy
- For BLAST, 100% match the query k-mer to reference then extend until score drops below 50%
- ▶ 0.1 1 sec per query; not feasible for NGS data

Hash-based alignment (present day)

- Need to make some concessions on sensitivity by making adaptations for use on NGS data:
 - allow for mismatches and/or gaps (ELAND, MAQ, SOAP)
 - using multiple seeds (BLAT, ELAND2)
- Memory intensive and slower (~16GB RAM required for hg19)
- Simpler in design but more sensitive

Suffix arrays

- A sorted table of all suffixes (substrings) of a given string
- A suffix array will contain integers that represent the starting indexes of the all the suffixes of a given string, after the aforementioned suffixes are sorted
- Requires large amount of memory to load the suffix array and genome sequence prior to alignment
- Popular Tools:

STAR (2012), Salmon

Let the given string be "mississippi"

Suffixes	ID	Sorted	Suffix
		Suffixes	Array
mississippi\$	1	\$	12
ississippi\$	2	i\$	11
ssissippi\$	3	ippi\$	8
sissippi\$	4	issippi\$	5
issippi\$	5	ississippi\$	2
ssippi\$	6	mississippi\$	1
sippi\$	7	pi\$	10
ippi\$	8	ppi\$	9
ppi\$	9	sippi\$	7
pi\$	10	sissippi\$	4
i\$	11	ssippi\$	6
\$	12	ssissippi\$	3

The suffix array will be: {12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3}

Lightweight alignment and quantification using Salmon

- Reference = FASTA file of all transcriptsequences for the organism
- Reference Index: (2 components)
 - Suffix array
 - Hash table (mapping each transcript to its location in the SA)
- Output:
 - Abundance estimates of reads mapping to each transcript listed in the reference

Lightweight alignment and quantification using Salmon

- Reference = FASTA file of all transcriptsequences for the organism
- Reference Index: (2 components)
 - Suffix array
 - Hash table (mapping each transcript to its location in the SA)
- Output:
 - Abundance estimates of reads mapping to each transcript listed in the reference

(e.g. fastq files)

- - - - Salmon index

quasi-mapping

Image source: RNA-seq blog

raw reads

input transcripts

Note that we don't get the genomic coordinates of where each read is mapping with this approach!

Transcriptome Mapping

Transcriptome Mapping

Reads

RSEM,

Kallisto,

Sailfish,

Salmon

Transcript mapping and quantification

These materials have been developed by members of the teaching team at the <u>Harvard Chan Bioinformatics Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons Attribution license (CC BY 4.0)</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

