

Introduction to ChIP-seq using High-Performance Computing (HPC)

Harvard Chan Bioinformatics Core

in collaboration with

HMS Research Computing

https://tinyurl.com/hbc-chipseq-schedule

Learning Objectives

- Describe best practices for designing an ChIP-seq experiment
- ✓ Describe steps in a typical ChIP-seq analysis workflow
- Use HMS-RC's O2 compute cluster to efficiently run the ChIP-seq workflow from sequence reads to peak calls, including QC and visualization.

https://tinyurl.com/chipseq-exit-survey

Thanks!

- Shannan Ho Sui (HBC)
- Andy Bergman (HMS-RC)
- Kathleen Keating (HMS-RC)
- Data Carpentry

These materials have been developed by members of the teaching team at the <u>Harvard Chan</u> <u>Bioinformatics Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons Attribution license (CC BY 4.0)</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Talk to us early

Involvement in study design to optimize experiments

Questions?

HBC training team: hbctraining@hsph.harvard.edu HBC consulting: bioinformatics@hsph.harvard.edu O2 (HMS-RC): rchelp@hms.harvard.edu

More Information..

HBC training materials: https://hbctraining.github.io/main HBC website: http://bioinformatics.sph.harvard.edu O2 Wiki (HMS-RC): https://wiki.rc.hms.harvard.edu/display/02

Twitter

HBC: @bioinfocore HMS-RC: @hms_rc

