

ChIP-seq: Mapping DNA-protein interactions

HSPH Bioinformatics Core Shannan Ho Sui April 29, 2019

1

What is ChIP-seq

- Assay genome wide binding of protein to DNA
- Uses a combination of chromatin immunoprecipitation and sequencing
- Identifies how transcription factors and histone modifiers interact with DNA *in vivo*
- Complements DNA accessibility studies and gene expression profiling
- Gain an understanding of gene regulation

Transcriptional regulation is complex

Adapted from The ENCODE Project Consortium (2011). PLOS Biology

Complexity in transcriptional regulation

Diverse mechanisms to ensure that genes are expressed at the right time, in appropriate tissues and under specific conditions

b Tissue A

Shlyueva, et al (2014). Transcriptional enhancers: from properties to genome-wide predictions.

a Chromatin as accessibility barrier

Chromatin structure determines if a gene is expressed or not

Genomic methods for detecting regulatory elements

ChIPseq

Also ChIA-PET and chromosome conformation capture (3C) based methods to detect not only the contact points but also the pairwise connections between these points

Library Preparation

Need sufficient amount of starting material because the ChIP will enrich for a small proportion

► Ideally the starting material for one ChIP uses 10⁷ cells from culture

Crosslink proteins to DNA

Fragment

► The DNA is sheared into small fragments - usually 200-500 bp in length

Check by running on a gel

Protein specific antibody

The sheared protein-bound DNA is immunoprecipitated using a specific antibody

Immunoprecipitate

The antibody binds primarily to the protein of interest but there may be cross reactivity with other proteins with similar epitopes

Reverse crosslink and purify DNA

Identify bound regions

~10 ng of ChIP DNA

High resolution variations of ChIP-seq₁₄

Crosslinking of cells with formaldehyde

Library preparation and sequencing

c ORGANIC

Endonuclease activity of MNase Exonuclease activity of MNase

Solubilization of chromatin

Immunoprecipitate with antibodyconjugated magnetic beads

Nature Reviews | Genetics

Zentner & Henikoff (2014). Nature Reviews Genetics.

Types of signals

Adapted from Park (2009). Nature Reviews Genetics.

Profiling histone modifications

- Active promoters: H3K4me3, H3K9Ac
- Active enhancers: H3K27Ac, H3K4me1
- Repressors: H3K9me3, H3K27me3
- Transcribed gene bodies: H3K36me3

Why are controls necessary?

- Signal depends on # active binding sites, the number of starting genomes, IP efficiency
- Open chromatin regions fragment more easily than closed regions
- Repetitive sequences might seem to be enriched
- Uneven distribution of sequence tags across the genome
- Hyper-ChIPable regions
- Allows us to compare with the same region in a matched control
- ENCODE also provides a "Black List"

Specific antibody (ChIP enrichment)

Non-specific antibody (IgG "mock IP")

ChIP-Seq Controls

Map of ChIP-seq versus control signals

Parameters for a successful ChIP

- Efficient and specific antibody
- Amount of starting material
 - ChIP DNA yield depends on various factors
 - Cell type in question
 - Abundance of the mark or protein (histones have high binding coverage than TFs)
 - Antibody quality
 - "For an IP for histones using 20ug of chromatin DNA from T cells as starting material I have got between 15-50ng DNA in total. For TFs I usually got 5-25ng from 25 million cells (200ug chromatin)." - Subhash Tripathi, ResearchGate

20

Parameters for a successful ChIP

- Chromatin fragmentation
- Size matters (not too big and not too small)
- Can vary between cell types
- Stringency of washes

bp 1500 1000

500 -

200 -100 -

Fragments too big:

Reduced signal to noise ratio in ChIP-seq

Oversonication:

Fragmentation biased towards promoter regions causes ChIP-seq enrichments at promoters in both, ChIP AND control (input) sample

O'Geen et al (2011), Methods Mol Biol: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151291/ Schmidt et al (2009), Methods; 48(3): 240-248. doi: 10.1016/j.ymeth.2009.03.001.22

Sequencing considerations

- Read length (50- to 150-bp)
- > Longer reads and paired-end reads improve mappability
 - Only necessary for allele-specific chromatin events, investigations of transposable elements) >
- > Balance cost with value of more informative reads
- Avoid batches or distribute samples evenly over batches
- Sequencing depth (5-10M min; 20-40M as standard for TFs; higher for broad profiles)
- Sequence input controls to equal or higher depth than IP samples

Meyer & Liu, Nature Reviews Genetics, 2014

H3K4me3

H3K27me3

Percentage of significantly enriched regions from the full data recovered in each subsample for H3K4me3, H3K36me3 and H3K27me3

Percentage of increase in enriched regions recaptured when an additional 1 million reads were sequenced

Replicates and reproducibility

Enrichment score

- Biological replicates are essential to understand variation and for differential binding analysis
- More replicates is often preferable to greater depth
- Better to sequence highquality sample at lower depth than low-quality sample to higher depth

Quality check and filtering

- Raw sequence QC is similar to RNA-seq
- However,
 - Explore duplication rates and possibly remove duplicates
 - Remove blacklisted regions
 - Assess cross correlation scores and Fraction of Reads in Peaks (FRiP)
- Software: <u>ChIPQC</u>, Homer, ChiLin, DiffBind

Understanding strand cross-correlation

= binding site ---- = size selected DNA fragment

Understanding strand cross-correlation

ChIP-seq fragments are sequenced from the 5' end

Understanding strand cross-correlation

Alignment generates a **bimodal pattern** on the plus and minus strands around binding sites

Peak calling algorithms use this pattern to estimate the relative strand shift

Modeling noise to detect real peaks

- Noise is not uniform (chromatin conformation, local biases, mappability)
- Input data is mandatory for a reliable estimation of noise (even though some tools don't require it)

Peak detection

- Most algorithms model the number of reads from a genomic region/ window using a Poisson distribution
- One parameter model for estimating the expected number of reads in the window
- Often more variance in real data than assumed by the Poisson (overdispersion)
- MACS (model-based analysis of ChIP-Seq) uses multiple Poisson distributions to model the local background noise within each region from the input data

$$P(k ext{ events in interval}) = e^{-\lambda} rac{\lambda^k}{k!}$$

where

- λ is the average number of events per interval
- e is the number 2.71828... (Euler's number) the base of the natural logarithms
- k takes values 0, 1, 2, …
- $k! = k \times (k 1) \times (k 2) \times ... \times 2 \times 1$ is the factorial of k.

- Variability in number of peaks called
- Tend to agree on the strongest signals

WIIbanks & Facciotti (2010). PLoS ONE.

How to choose one

- Widely used
- your parameters for your peak caller
- Actively maintained and updated Default settings are a good start but know Be critical! Visually inspect your data (IGV)

Detecting differential enrichment across samples Steinhauser et al, Brief Bioinform. (2016)

Figure 4. Proportion of true and false positives for each tool on the simulated FoxA1 data set (A, B) and H3K36me3 data (C, D)

Figure 7. Decision tree indicating the proper choice of tool depending on the data set: shape of the signal (sharp peaks or broad enrichments), presence of replicates and presence of an external set of regions of interest [*Steinhauser, et al, 2016*].

Annotation of peaks - distance from TSS ChiPseeker, Homer, ChiLin

Annotation of peaks - genomic context ChiPseeker, Homer, ChiLin

Functional enrichment analysis <u>ChIPseeker</u>, GREAT, Homer, ChiLin

	Biologia
biological process -	
cellular process -	
single-organism process -	
single-organism cellular process -	
developmental process -	
single-organism developmental process -	
multicellular organismai development	
biological regulation -	i
system development -	
metabolic process -	
regulation of biological process -	
cell differentiation -	
single-multicellular organism process -	•
regulation of cellular process -	•
cellular developmental process -	
multicellular organismal process -	
nervous system development	
organic substance metabolic process -	i
primary metabolic process -	i
anatomical structure morphogenesis -	
cellular metabolic process -	•
positive regulation of cellular process -	
localization -	•
neurogenesis -	
organ development -	•
cell development -	
generation of neurons -	
cellular component organization or biogenesis	
macromolecule metabolic process -	
regulation of metabolic process -	
negative regulation of biological process -	i
cellular macromolecule metabolic process -	•
	110
	sp140
	0h
	(9760)
	(0,00)

Motif discovery MEME suite, ChiLin, Homer

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.nbcr.net.

If you use DREME in your research please cite the following paper: Timothy L. Bailey, "DREME: Motif discovery in transcription factor ChIP-seq data", Bioinformatics, 27(12):1653-1659, 2011. [full text]

DISCOVERED MOTIFS INPUTS & SETTINGS **PROGRAM INFORMATION**

DISCOVERED MOTIFS

- Integrative analysis of **RNA-seq and ChIP-seq**
 - Which of the regulated genes are direct targets of the TF?
 - Is the TF an activator, repressor, or both?
 - Does the TF have different binding partners depending on the direction of regulation?

Summary

Binding and Expression Target Analysis (BETA) is a software package that integrates ChIP-seq of transcription regulators with differential gene expression data to infer direct target genes. BETA has three functions: (1) has activating or repressive function; (2) to infer the factor's target genes; and (3) to identify the motif of the which might modulate the factor's activating or repressive function. Here we describe the implementation and features of BETA to

Some notes on ATAC-seq

- Main advantage over existing methods is the simplicity of the library preparation protocol: Tn5 insertion followed by two rounds of PCR.
 - requires no sonication or phenol-chloroform extraction like FAIRE-seq
 - no antibodies like ChIP-seq
 - no sensitive enzymatic digestion like MNase-seq or DNase-seq
- Unlike similar methods, which can take up to four days to complete, ATAC-seq preparation can be completed in under three hours.
- Lower starting cell number than other open chromatin assays (500 to 50K cells recommended for human).

Slide by Meeta Mistry

What does it give us?

Multiple aspects of chromatin architecture simultaneously at high resolution.

for ATAC-seg and DNase-seg experiments.

- Maps open chromatin
- TF occupancy
- nucleosome occupancy

Tsompana and Buck, 2014

Slide by Meeta Mistry

Planning your ATAC-seq experiment

- Replicates: more is better
- Controls: not typically run, but could use deproteinized "naked" genomic DNA
- PCR amplification: as few cycles as possible
- Sequencing depth: varies based on size of reference genome and degree of open chromatin expected
- Sequencing mode: paired-end
- Mitochondria: discarded from computational analyses; option to remove during prep

Adapted from slide by Meeta Mistry

ATAC-seq data analysis

- Peak calling using MACS2 with PE settings and without model building
- Remove mitochondrial reads
- Shift alignments
- Separate nucleosome free regions (NFR) from nucleosome containing regions

Ou et al, Bioconductor 2018

Summary

- Basics of the ChIP protocol
- Better understanding of how to design a ChIP experiment
- How to analyze the data
- What to look for in a good ChIP data set

Ask us questions

<u>shosui@hsph.harvard.edu</u> <u>bioinformatics.sph.harvard.edu</u>

