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What is ChIP-seqg

Assay genome wide binding of protein to DNA

Uses a combination of chromatin
immunoprecipitation and sequencing

Identifies how transcription factors and histone
modifiers interact with DNA in vivo

Complements DNA accessibility studies and
gene expression profiling

Gain an understanding of gene regulation



Transcriptional regulation is complex
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Adapted from The ENCODE Project Consortium (2011). PLOS Biology



Complexity In
transcriptional
regulation

Diverse mechanisms to ensure that genes

are expressed at the right time, In
appropriate tissues and under specific
conditions

Shlyueva, et al (2014). Transcriptional enhancers: from properties to
genome-wide predictions.




a Chromatin as accessibility barrier
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Enhancer Core promoter

d Closed or poised enhancer e Primed enhancer

Enhancer

i DNA-binding proteins: @ H3K4mel @ H3K27ac
Q@@ s =mmmm DNAbInding O @@ TFs, CTCF, repressors Shlyueva, et al (2014)

and polymerases @ H3K4me3 Q H3K27me3

Nature Reviews | Genetics

Chromatin structure determines if a gene is expressed or not




ChlP-seq fora TF ChlP-seq for chromatin marks

Genomic methods
for detecting
regulatory elements

ATAC-seq DNase-seq
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closed
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chromatin . amplifiable \‘
2 - Buenrostro et al., 2015 Shlyueva, et al (2014)

fragments

Also ChIA-PET and chromosome conformation capture (3C) based methods to detect not only the contact points but also the pairwise
connections between these points



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374986/

Library Preparation

» Need sufficient amount of starting material because the ChIP will enrich for a small proportion

» |deally the starting material for one ChIP uses 10’ cells from culture



Crosslink proteins to DNA




Fragment
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» The DNA is sheared into small fragments - usually 200-500 bp in length

» Check by running on a gel



Protein specific antibody
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» The sheared protein-bound DNA is immunoprecipitated using a specific antibody




Immunoprecipitate

£ .

» The antibody binds primarily to the protein of interest but there may be cross reactivity with
other proteins with similar epitopes



Reverse crosslink and purify DNA



Identify bound regions

ChIP-PCR ChlP-chip ChlP-seq

~10 ng of ChIP DNA



a ChlP-exo

f Crosslinking of cells
\ with formaldehyde

l Cell lysis
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Nature Reviews | Genetics

N resolution variations of ChlP-seq




Types of signals
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Adapted from Park (2009). Nature Reviews Genetics.



Profiling histone modifications

» Active promoters: H3K4me3, H3K9AC
» Active enhancers: H3K27Ac, H3K4mel
» Repressors: H3K9me3, H3K27me3

» Transcribed gene bodies: H3K36me3
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Why are controls necessary”?

e Signal depends on # active binding sites, the number of starting genomes, [P efficiency
e Open chromatin regions fragment more easily than closed regions

® Repetitive sequences might seem to be enriched

e Uneven distribution of sequence tags across the genome

e Hyper-ChlPable regions

e Allows us to compare with the same region in a matched control

e ENCODE also provides a “Black List”




Crosslink proteins to DNA

Shear DNA (sonication)
L g .
Immunoprecipitation * No IP (Input DNA)

i Non-specific antibody (IgG “mock IP”)

Size selection and PCR

Specific antibody (ChIP enrichment)
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ChlIP-Seq Controls
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Parameters for a successful ChlP

» Efficient and specific antibody
» Amount of starting material

» ChIP DNA yield depends on various factors
» Cell type in question
» Abundance of the mark or protein (histones have high binding coverage than TFs)

» Antibody quality

» “For an IP for histones using 20ug of chromatin DNA from T cells as starting material | have got
between 15-50ng DNA in total. For TFs | usually got 5-25ng from 25 million cells (200ug
chromatin).” - Subhash Tripathi, ResearchGate




Parameters for a successful ChlP

» Chromatin fragmentation
» Size matters (not too big and not too small)
» Can vary between cell types

» Stringency of washes

Fragments too big:
Reduced signal to noise ratio

In ChlP-seq

Oversonication:
Fragmentation biased towards
promoter regions causes
ChlP-seq enrichments at
promoters in both, ChIP AND
control (input) sample




Chromatin

Preparation
(Sections 3.1 and 3.2)
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151291/

Experimental design
<

Biological samples/Library preparation
Seqguence reads
Quality control

Alignment to Genome

ChlP-seq workflow




Seqguencing considerations

» Read length (50- to 150-bp)
> Longer reads and paired-end reads improve mappability
> Only necessary for allele-specific chromatin events, investigations of transposable elements)
> Balance cost with value of more informative reads
» Avoid batches or distribute samples evenly over batches
» Sequencing depth (5-10M min; 20-40M as standard for TFs; higher for broad profiles)

» Seqguence input controls to equal or higher depth than IP samples

Meyer & Liu, Nature Reviews Genetics, 2014




Impact of sequencing depth
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Impact of sequencing depth
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Impact of sequencing depth

Percentage of significantly enriched regions from the full data recovered in
each subsample for H3K4me3, H3K3ome3 and H3K2 /me3
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Impact of sequencing depth

Percentage of increase in enriched regions recaptured when an additional
1 million reads were sequenced
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Replicates and reproducibility

= Biological replicates are ° i
. o I - 9
essential to understand 5 _ - High confidence
variation and for E o
differential binding g o
analysis e
= More replicates is often N 000 2000 3000 4000
preferable to greater Peak rank
depth
= Better to sequence high- a S|O><2 i S|O><2
: eplicate 1 eplicate 2
quality sample at lower 4605) 2382)

depth than low-quality 2090
sample to higher depth



Transcription factor

20 million usable reads

Experiment Design

Yes

~106 cells?

ood antibody*

>10 ng IP DNA

No

Optimize

No

Consider low input method

Dahl & Gilfallan. Briefings in Functional Genomics, Volume 17, Issue 2, 1
Yes March 2018, Pages 89-95,
Yes No
STOP

ChlIP + Control

Replicates”?
Yes

Factor type?

No

No

STOP

STOP

Histone modification

45 million usable reads™




Experimental design
-

Biological samples/Library preparation

Seqguence reads

Quality control FASTQC

Alignment to Genome BWA, Bowtie2

Filter duplicates, multi mappers, blacklist

Peak Calling

ChlP-seqg workflow




Quality check and filtering

» Raw sequence QC is similar to RNA-seq
= However,

= EXxplore duplication rates and possibly remove
duplicates

= Remove blacklisted regions

= Assess cross correlation scores and Fraction of
Reads in Peaks (FRIP)

Software: ChIPQC, Homer, ChiLin, DiffBind



http://inesdesantiago.github.io/SeqQC.blog/ChIPQC_post1/ChIPQCreport/ChIPQC.html

Understanding strand cross-correlation

= pbinding site
---- = gize selected DNA fragment




Understanding strand cross-correlation

ChlP-seq fragments are sequenced from the 5’ end




Understanding strand cross-correlation

Alignment generates a bimodal pattern on the plus and minus strands around
binding sites

d

< >

Peak calling algorithms use this pattern to
estimate the relative strand shift




Modeling noise to detect real peaks

» Noise is not uniform (chromatin conformation, local
biases, mappability)

» Input data is mandatory for a reliable estimation of
noise (even though some tools don't require it)

Sigﬂal /\/\/\/\j\

Background noise

Y~ T




Peak detection

Most algorithms model the number
of reads from a genomic region/
window using a Poisson distribution

One parameter model for estimating
the expected number of reads in the
window

Often more variance in real data
than assumed by the Poisson
(overdispersion)

MACS (model-based analysis of
ChIP-Seq) uses multiple Poisson
distributions to model the local
background noise within each region
from the input data

P(k events in interval) = e —

where

« A is the average number of events per interval

« eis the number 2.71828... (Euler's number) the base of the natural logarithms
« ktakes values 0, 1, 2, ...

e kl=kx(k-1)x(k-2)x...x2x1is the factorial of £.

0.40—
0.35F
0.30f
< 0.25}
% 0.20f
o
0.15f
0.10F
0.05f
0.00

0 5 10 15 20
K

http://en.wikipedia.org/wiki/Poisson distribution



https://en.wikipedia.org/wiki/Poisson_distribution

Peak callers

= Variability in number MACS | —

SISSRS m
of peaks called Sppmm::. mmms

Spp Widjsmma

= Tend to agree on the
strongest signals
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Sole-Search:. |

Peak calling program
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Core peaks: |
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Number of Peaks (thousands)

Wilbanks & Facciotti (2010). PLoS ONE.



How to choose one

Widely used
Actively maintained and updated

Default settings are a good start but know
vour parameters for your peak caller

Be critical! Visually inspect your data (IGV)



Downstream analysis

» Detecting differential enrichment across samples

» Steinhauser et al, Brief Bioinform. (2016)

Sharp ChlP-seq signal: FoxA1
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Broad ChlP-seq signal: H3K36me3
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Figure 4. Proportion of true and false positives for each tool on the simulated FoxA1 data set (A, B)
and H3K3bme3 data (C, D)




Sharp or Broad
ChIP Enrichment?

Biological < Sharp
Replicates?
Predefined < YES NO > Predefined
Region Set? Region Set?
YES NO YES NO
Y Y \4 Y
) ggl(l;C[gmp - diffReps-nb - MAnorm - diffReps-cs/-gt
S - MultiGPS’ - unique Peaks - Homer
SIS - PePr - QChlPat -
- MMDiff - MACS2 bdgdiff
- ODIN-bin
- ODIN-pois
- SICER

Broad | Biological
Replicates?
Predefined < YES NO > Predefined
Region Set? Region Set?
YES NO YES NO
\4 \4 \4 Y
- diffReps
- ChIPComp - PePr : Eﬁn?nt?emlleaks - Homer
- DiffBind - diffReps-nb 0 Pat - MACS2 bdgdiff
- ODIN-pois/-bin
- RSEG
- SICER

Figure 7. Decision tree indicating the proper choice of tool depending on the data set: shape
of the signal (sharp peaks or broad enrichments), presence of replicates and presence of an
external set of regions of interest [Steinhauser, et al, 2016].




Downstream analysis

= Annotation of peaks - distance from TSS
» ChIPseeker, Homer, ChiLin
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Downstream analysis

= Annotation of peaks - genomic context
» ChIPseeker, Homer, ChiLin
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Downstream analysis

= Functional enrichment analysis
» ChIPseeker, GREAT, Homer, ChiLin

Biological Process Enrichment
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Downstream analysis

= Motif discovery
» MEME suite, ChiLin, Homer

1'DREME

Discriminative Regular Expression Motif Elicitation

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.nbcr.net.

If you use DREME in your research please cite the following paper:
Timothy L. Bailey, "DREME: Motif discovery in transcription factor ChIP-seq data", Bioinformatics, 27(12):1653-1659, 2011. [full text]

DiscovERED MoTirs | INPUTS & SETTINGS | PROGRAM INFORMATION

Di1SCOVERED MOTIFS
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Downstream analysis

» Integrative analysis of
RNA-seq and ChIP-seq Differentially  TE_bound

: expressed
= Which of the regulated . genes

genes are direct targets
of the TF?

= Is the TF an activator,
repressor, or both?

» Does the TF have
different binding partners
depending on the
direction of regulation?

Download Installation

Summary

Binding and Expression Target Analysis (BETA) is a software package that integrates ChlP-seq of transcription factors or chromatin
regulators with differential gene expression data to infer direct target genes. BETA has three functions: (1) to predict whether the factor
has activating or repressive function; (2) to infer the factor’s target genes; and (3) to identify the motif of the factor and its collaborators
which might modulate the factor's activating or repressive function. Here we describe the implementation and features of BETA to



Some notes on ATAC-seq

» Main advantage over existing methods is the simplicity of
the library preparation protocol: Tn5 insertion followed by
two rounds of PCR.

» Fequires no sonication or phenol-chloroform extraction like
FAIRE-seq

» No antibodies like ChIP-seq

» N0 sensitive enzymatic digestion like MNase-seq or
DNase-seq

» Unlike similar methods, which can take up to four days to
complete, ATAC-seq preparation can be completed in under
three hours.

» Lower starting cell number than other open chromatin
assays (500 to 50K cells recommended for human).

Slide by Meeta Mistry



What does it give us?

» Multiple aspects of chromatin architecture
simultaneously at high resolution.

Maps open chromatin

TF occupancy
nucleosome occupancy

TN NN/ NN

Y

DNase
)N FNT MDY
1148

Hl

MNase

"II“II“ DNase

Figure 1 Schematic diagram of current chromatin access

DNA fragments generated by each assay are s
represent data signal obtained from each assay across

for ATAC-seq and DNase-seq experiments.
N\

the entire region. The footprint created by a transcription factor (TF)

ibility assays performed with typical experimental conditions. Representative

hown, with end locations within chromatin defined by colored arrows. Bar diagrams
is shown

Isompana and Buck, 2014

Slide by Meeta Mistry



Planning your ATAC-seqg experiment

= Replicates: more is better

= Controls: not typically run, but could use deproteinized
"naked” genomic DNA

= PCR amplification: as few cycles as possible

» Sequencing depth: varies based on size of reference
genome and degree of open chromatin expected

» Sequencing mode: paired-end

» Mitochondria: discarded from computational analyses;
option to remove during prep

Adapted from slide by
Meeta Mistry



ATAC-seqg data analysis

Peak calling using MACS2
with PE settings and without
model building

Remove mitochondrial reads
Shift alignments

Separate nucleosome free
regions (NFR) from
nucleosome containing
regions

Normalized read density x 107°
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Summary

» Basics of the ChIP protocol

» Better understanding of how to
design a ChIP experiment

» How to analyze the data

» What to look for in a good ChIP data
set



ASK US questions

shosui@hsph.harvard.edu

bioinformatics.sph.harvard.edu
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