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Understanding Chramatin Blology
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Complexity in gene
regulation

Diverse mechanisms to ensure that genes
are expressed at the right time, In
appropriate tissues and under specific
conditions

Numerous diseases associated with
mutations in the non-coding genome

d Gene X mRNA
Incalization

JJ. atN-terminal tails

mmmmommmm TF motif occurences O H3K27me3 @ H3K4me3

OO00OQO Activating TFs @ Repressive TP @ H3K27ac @ H3K4mel wf Histones modified

Nature Reviews | Genetics

Shlyueva, et al (2014). Transcriptional enhancers: from properties to
genome-wide predictions.




What is chromatin?

Chromatin: a mixture of DNA and
proteins that form the chromosomes
found in the cells of humans and
other higher organisms

Nucleosome: 147 bp of DNA B Al Kl S ’\/) Chtomati e
wound around 8 histone proteins R W=e
(octamer) consisting of 2 copies [ am
each of the core histones (H2A,
H2B, H3, H4)

Chromosome

"Beads on a string”
e DNA wound on

) nucleosomes
'S\

Heterochromatin: condensed %

C h roma tl N — Double helix
- - ~<

Euchromatin: extended chromatin @b

https://www.creative-diagnostics.com/blog/index.php/
the-structure-and-function-of-chromatin/



a Chromatin as accessibility barrier

Closed J ' A _ /! accessible

© H3K4mel | @ H3K4me3
Q@ H3K27ac ~ / Q@ H3K27ac

Core promoter

€ Primed enhancer

© H3K4mel |
Q H3K27me3 1) A Q) Y Y @ H3K4mel
H A -

Enhancer

Stimulus © H3K4me1l
- @ H3K27ac

Enhancer

" DNA-binding proteins: @ H3K4mel @ H3K27
DNA binding € i

TFs [ o : .o TFs, CTCF, repressors

000 motifs O kol i @ H3K4me3 @ H3K27me3

and polymerases

Shlyueva, et al (2014)

Nature Reviews | Genetics

Chromatin structure determines if a gene is expressed or not




How do enhancers, repressors and
cofactors regulate transcription?

H3K4dme1 H3K4dme" H3K4me3 H3K4me3

i Jds

NN SNNAN AN
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FaVaVa VoV a WV . Vav, v

’ H3K27ac H3K27ac T
H3K27ac Hamm:?m?au H3K4me1 H3K4me?3 H3K4me3 i
Active Enhancer Promoter

Xia & Wei, Cells, 2019

“ Histone 6) Coactivator ' RNA pol |l

Enhancers are DNA regulatory elements that activate transcription to a higher level
Operate from a distance by forming chromatin loops that bring the enhancer and
target gene into proximity

Silencers reduce transcription from their target promoters

Cofactors do not bind DNA directly but mediate protein-protein interactions
between TFs and the basal transcriptional machinery




What are insulators?

Long range regulatory elements A B ksitaton

Block enhancers and silencers

from improperly activating or & —> >
p y : - Promoter|

repressing non-cognate promoters

Barrier insulators prevent silencing
of euchromatin by the spread of
neighboring heterochromatin ..

Enhancer-blocking insulators
prevent distal enhancers from
acting on promoters of neighboring Trends in Genetics 2014 30161-171
genes

Challenging to find based on
chromatin features

(B) Enhancer blocking insulator

——‘\\/”_1; ~—

Promoter Enhancer Promoter|

TRENDS in Genetics




Identifying functional regulatory elements

DNA Chromatin DNase | , =
5 ¢ - F |
methylation modifications | Ch|P-seq I hi{persensmve g::gt':iza
CUT&RUN R elements
Histone Nucleosome
- :
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vy =9 | ATAC-seq|
| _ ' ’
& I
ChIP-seq Transcription-factor
CUT&RUN binding sites Long-range
v chromatin
interactions o8 T A
Transcription Transcription 8P
DNA factor machinery
Long-range Promoter Protein-coding
regulatory architecture and non-coding
elements transcripts
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Chromosome
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Ecker, J., Bickmore, W., Barroso, |. et al. ENCODE explained. Nature 489, 52-54 (2012). https://doi.org/10.1038/489052a



https://doi.org/10.1038/489052a

The ChIP-seq assay

= Assay genome wide binding of
protein to DNA

» Uses a combination of
chromatin immunoprecipitation
and sequencing

» Identifies how transcription
factors and histone modifiers
interact with DNA /n vivo

= Complements DNA accessibility
studies and gene expression

f. I I De-crosslink proteins
p rO I I n g Purify DNA
Library Preparation
u G a I n a n u n d e rSta n d I n g Of g e n e Immunoprecipitation 1: H3K4me3 antibody Immunoprecipitation 2: Transcription factor antibody
- . B s s s e s |
I R R e e = |'lumina adapters
re g u a tl O n == PS barcodes

W p7 barcodes

Next-generation sequencing

Image: https://brcf.medicine.umich.edu/cores/epigenomics/products-and-services/chip-seq/



Cleavage Under Targets and Release Using
Nuclease (CUT&RUN) assay

Also to assay genome wide binding of
protein to DNA

Combines antibody-targeted controlled
cleavage by microccal nuclease with
sequencing

Cells are bound to beads and then
permeabilized to allow antibodies and
PAG-MN to diffuse in

Antibodies bind to DNA, followed by
binding of pAG and activation of
MNase with Ca++

Spike-in added with stop buffer

Requires fewer cells, lower read depth
and is an easier assay to perform

Skene & Henikoff (2017), eLife 6:e21856.
TF-specific antibody

=-(
. B A p o
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ConA . ,‘Protem A-MNase
Bead : :
Antibodies
g
diffuse in o @ Q

#Ca
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,U, Stop + spike-in
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ConA .
Bead

®

TF complex
diffuses out

Prepare sequencing libraries

pAG-ERH-MNase-6xHIS-HA (pAG/MNase) expression cassette (45 kDa

Protein A Protein G MNase I(His)ﬁl HA

146 a3 /0 aa b aa 149 aa 15 aa baa 5Saa 6baa

Meers et al. (2019), eLife 8:e46314.



Assay for Transposase-

I I I Tightly packed, closed Loosely packed, open

AcceSSI b I e C h ro m a tl n W I th Transcriptionally inactive Transcriptionally

. chromatin active chromatin
sequencing (ATAC-seq) . B . ,

. . Hyperactive
» Measure the extent to which DNA is open trgr?sposase R\ ‘
and accessible genome-wide DOTROTITRT" e i Simultaneous fragmentation

DNA ¢ and tagging of laccessmle DNA

» Uses a hyperactive Tn5 transposase that | |

cuts and inserts sequencing adapters into ’mm
regions of chromatin that are accessible SR * l

» Fragment length correlates with
nucleosome-free regions (less than /A”..»‘—\.\\l

147bp) and mono-, di- and trinuclesome Purify fragmented DNA and PCR l

amplify using tag sequence

Normalized read density x 10~

regions
Next-generation
sequencing
DNA pitch 2 Single nucleosome
8 - (~10.5 bp) n% 03 DlmerT'imer
3 Tetramgrema'"er 4 S i k
61 Nucleosome = 1o~ Hexamer ATAC-Seq ; o
c Peaks (kb) - corresponding to
4 1 ; - s | I, 0 A L open chromatin
0 400 800 1,200
2 Fragment length (bp)
0- — https://seandavi.github.io/AtacSeqgWorkshop/articles/\Workflow.html
0 200 400 600 800 1,000

Fragment length (bp)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374986/

ChiIP-seq

Sonication

Cell Lysis and l

Overnight
Incubation

Chromatin Elution
and DNA Isolation

Library
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Library
Preparation Preparation

0 Chromatin-interacting

factor Q| Primary ‘ Hyperactive Tn5
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Adapted from Klein & Hainer (2020). Chromosome Res 28, 69-85.
https://doi.org/10.1007/s10577-019-09619-9



Profiling histone modifications

Active promoters
H3K4me3, H3K9AC

Active enhancers
H3K27Ac, H3K4me1

Repressors
H3K9me3, H3K27me3

Transcribed gene bodies

H3K36me3

Human T-cell ChlP-seq data
(Lim et al, 2010, Epigenomics)

Active gene Silent gene

CpG
Enhancer island Promoter Gene body Promoter Gene body
TSS TSS

BRI ‘ ;
A
H3K79me1/2/3 A
ERNNRG ey SN

H3K27me3 -
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Profiling open chromatin

C Chr19 (gq13.12) 19p13.3
= 50 kb { hg19
Chr19: 36,150,000 ' 36,200,000 S 36,250,000
1-
ATAC-seq
(50,000 cells
per replicate)
0-
1 -
DNase HS
ENCODE/Duke
4|
B CTCF
W H3K4me1 1- |
W H3K27ac ﬂ E | i ,
H3K4me3 _h.i_, - h.m-Ah‘l“J_‘LML—LA._LA“J.AJ. IO T J.MM ( .LN“.-..._L;. : m_..-JL..L.;-.s“..‘L*h .
HAUSS - ETV2 il UPK1A 44 ZBTB32»§) GFLR1H+ HSPB6MY ARHGAP33H#HHHE
RBM42 -t UPK1A-AS1 #eesi MLL4 bEHBHHHHE -1 C190rf55 H-4-$Hip
COX6B113p-+4+ U2AF1L4#H ARHGAP33 HiIHHHE
U2AF1L4 M
PSENEN#§
LIN37 b=4M
Starting material Preparation time
FAIRE-seq E E E
DNase-seq | . . .

Adapted from Buenrostro, et al. Nat Methods 10, 1213-1218 (2013). https://doi.org/10.1038/nmeth.2688

ATAC-seq -

No. of cells 10°10°10°10°10°10710° Day 1 2 3 4




What does it give us?

= Multiple aspects of chromatin architecture
simultaneously at high resolution.
» Maps open chromatin
= [F occupancy
» nucleosome occupancy

FAFAFAFATN:

DNase
S NN, N )N
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Figure 1 Schematic diagram of current chromatin accessibility assays performed with typical experimental conditions. Fepresentzative
DNA fragments gznerated by each assay are shown, with ead loczations within chro~atin de‘ined by colored amows. Bar diagrams

represent data signal abtained from ezch assay across the entire regan. The footorint created ny a transcription factar (1-) is shown Sl Ide b Meeta I\/l IS't
for ATAC-seq and [DNase-seq experiments y ry

Tsompana and Buck, 2014




Visualizing peaks in the UCSC genome
browser

Scale 5 kb | hg38
chri7: | 72,116,000 72,117,000 72,118,000 72,119,000 72,120,000 72,121,000 72,122,000 72,123,000 72,124,000 72,125,000 72,126,000
ENCODE Candidate Cis-Regulatory Elements (cCCREs) combined from all cell types
ENCODE cCREs N i
GENCODE V36 (16 items filtered out)
AC007461.1}
AC007461.1}
SOX9-AS1
SOXO-AS T |46 e<<<<<<<<<1 SOXOL_— b e e
SOX9-AS1 Ik<«<—<<«—<«—<<«<«<<«<—<<1H
SOX9-AS1
SOX9-AS 1 <~~~ A<=«
SOX9-AS1

Vertebrate Multiz Alignment & Conservation (100 Species
Multiz Align -_ll-_-l-l-*ll (TR NN 0N |11 IO ACRCTU RN ORI W

100 vertebrates Basewise Conservation by PhyloP Mﬂl
)

H3K4Me1 Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE

e — i i, ., e .

H3K4Me3 Mark (Often Found Near Promoters) on 7 cell lines from ENCODE

Layered H3K4Me3 ﬁ

H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE

- - = B I — a—
200 _ DNase | Hypersensitivity Signal Colored by Similarity from ENCODE

DNase Signal
0 — R . ———— —.—_-‘L- . ‘JL_‘&b e, e R i ol

Layered H3K4Me1




Types of signhals

A CTCF

Transcription
factors kL l

RNA polymerase ||

el o S ‘AM s Al o s A AL A AMAM A A
H3K36me3

Histone
modifications

Enrichment over input

- T
31,200,000 31,220,000 31,240,000 31,260,000

Adapted from Park (2009). Nature Reviews Genetics.



Sheared Chromatin Cells OR nuclei Nuclei
(recommended)

Sample Input

Typical Required Cell # > 1 Million 500K

Histone PTMs &

ldeal Targets Histone PTMs & Histone PTMs & chromatin-interacting
select validated targets

chromatin-interacting proteins proteins, including remodelers

Secondary Antibody Yes

Library Preparation Yes Yes No (Direct to PCR)

Protocol Time
(Cells = NGS libraries)

2 days
(can be automated)

2 days

~ 1 week
b (can be automated)

Sequencing Depth > 30 million 3-5 million

Signal : Noise Low High

Experimental Throughput High

Comparison of ChlP-seq, CUT&RUN and CUT&TAG

https://www.epicypher.com/resources/blog/cut-and-run-vs-cut-and-tag-which-one-is-right-for-you/

18




ENCODE: Encyclopedia of DNA Elements

Hypersensitive Sites

o RNA polymerase

3D
Chromatin
Structure

Chromatin || Chromatin Chromatin
Accessibility || Interactions Modification

Genes

N N
2 Y g

Transcripts

Enhancer-Like Elements Promoter-Like Elements

Based on an image by Darryl Leja (NHGRI), lan Dunham (EBI), Michael Pazin (NHGRI)
[encodeproject.org]



http://encodeproject.org

https://www.encodeproject.org/

ENCODE Data  Encyclopedia  Materials & Methods Help 1

Search the ENCODE Portal

1::,7'."‘:.

Functional genomics —, 5 Encyclopedia of elements

¥ o

Rush Alzheimer's - Deeply profiled cell lines

:j" ? ’:.::' 3
.

Protein knockdown (Degron) Human donors

ENCORE Stem cell differentiation Imputed experiments




ENCODE Dpata Encyclopedia  Materials & Methods

Immune cells

Functional genomic series

Region search

Materials and methods

Help

-

Mouse development

Single-cell experiments

Encyclopedia browser

Publications

Reference epigenome

ChlP-seq experiments

Getting started




Parameters for a successful ChlP-seq

» Efficient and specific antibody

» Antibody may work for ChlP-seq yet fail in CUT&RUN because it is in its native form, not fixed

» Amount of starting material

» ChIP DNA yield depends on various factors

» Cell type in question

» Abundance of the mark or protein (histones have high binding coverage than TFs)
» Antibody quality

» Protein binding affinity




Parameters for a successful ChlP

» Chromatin fragmentation
» Size matters (not too big and not too small)
» Can vary between cell types

» Stringency of washes

Fragments too big:
Reduced signal to noise ratio

In ChlP-seq

Oversonication:
Fragmentation biased towards
promoter regions causes
ChlP-seq enrichments at
promoters in both, ChIP AND
control (input) sample




Maximizing success

ChlP-seq CUT&RUN ATAC-seq
200-500K for TFs*
Number of cells 1-10 million Can use fewer for histone 50-500K
marks (>5000)
Antibody QC Western blot Western blot N/A
IP DNA > 10 nQg > 1nQ > 3 NQ
IP QC gPCR gPCR with custom primers N/A

Library QC Tape station / BioAnalyzer | Tape station / BioAnalyzer | Tape station / BioAnalyzer

Negative control Input DNA or IgG Non-specific IgG N/A
Positive control Hi3Kames of Known H3K4me3 N/A
protein
Replicates 3 3 3

* Check cell count before and after bead purification
Check >90% of cells permeabilized (cell counter or hemocytometer)




Sample Intensity INormalized FU)

Library QC

Figure 1. ATAC-seq library starting with 100,000 fresh GM12878 Cells.

O
100
00

Figure 4. Example CUT&Tag library from 100 thousand K562 cells and H3K27me3.

ATAC-seq: Library fragments contain the original DNA
insert (< 90bp; short linkers) + 135 bp from the
adapters on each end. This creates library fragments
starting at ~200 bp which then increase to ~1000 bp.
Because of the periodicity of neighboring
nucleosomes, fragments pile up with peaks between
160-200 bp apart. Important to see a good spread of
fragments over the range between 200-1000 bp, with
the majority under 600 bp.

CUT&Tag: Unlike ATAC-5Seq there will not be as many
small fragments, as the pA-Tn5 should only be cutting
where the antibody is bound. A mononucleosome and
oligonucleosome ladder is typically observed due to
the peak-to-peak distance between neighboring
nucleosomes. With the length of the adapters on the
DNA of 135 bp and a peak-to-peak nucleosome
distance of 150-200 bp, the result is a nucleosome
ladder 150-200 roughly the same distance apart.

https://www.activemotif.com/blog-library-gc



Controls

» ChlP-seq assays require input controls
» CUT&RUN uses a non-specific |gG control

» Also recommend using a H3K4me3 positive control
» Controls are not typically used for ATAC-seq

» Expensive and of limited value. A control for a given sample would be genomic DNA from the
sample that, instead of transposase treatment, is fragmented (e.g. by sonication), has adapters
ligated, and is sequenced along with the ATAC sample.




Why are ChlP-seq controls necessary”/

t allows us to compare with the same region in a matched control and identify a the
oresence of artifacts that tend to generate false positive peaks.

e Open chromatin regions fragment more easily than closed regions
* Repetitive sequences might seem to be enriched (ENCODE also provides a “Black List”)
eHyper-ChlPable regions

e Uneven distribution of sequence tags across the genome
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Map of ChlP-seq versus control signals




A note on spike-in
controls

» Reduce the effects of technical variation

» Detect subtle biological differences that are not
observed with standard ChIP analysis

» Theoretically, can be applied across different
antibodies and samples without bias

» However, does not always work well with different
antibodies or with variable cell numbers

» Works best within a single experiment with the same
antibody (e.g. KO vs WT with one antibody)

Experimental 72— W Spike-in

Chromatin Chromatin

Antibody of [ Spike-in
[ N\

interest Antibody
ﬁ?

Chromatin Immunoprecipitation

v

Sequencing

¢ E

Map to experimental Map to Drosophila
genome genome

v

Normalize sample Normalize Drosophila
tag counts by same ratio tag counts across samples

https://www.activemotif.com/catalog/1091/
chip-normalization




Experimental design
<

Biological samples/Library preparation

Quality control

Alignment to Genome

Workflow




Sequencing recommendations

Read length

Sequencing
mode

Sequencing
depth

e Balance cost wit
* Seqguencing dep

depth.

ChIP-seq

50-150 bp

CUT&RUN

50-75 bp

ATAC-seq

50-75 bp

Single-end in most cases.
Paired-end for allele-
specific chromatin events
or transposable elements

Paired-end recommended
for accurate fragment size
iInformation.

Paired-end recommended
for accurate fragment size
information.

20-40 million for TFs; 45
million for broad histone
profiles
Control sequenced to
equal or higher depth

2-8 million paired-end
reads
Control sequenced to
equal or higher depth

50 million paired-end
reads for changes in
accessibility; 200 million
for TF footprinting

N value of more informative reads.
h guidelines are for mammalian cells. Smaller genomes require lower



Impact of sequencing depth (ChIP-seq)

H3K4me3
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Impact of sequencing depth

H3K2/me3
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Adapted from Jung et al (2014). NAR.



Replicates and reproducibility

. Biologi_cal replicates are ) ; Al binding sites
essential to understand g _ -~ High confidence sites
variation and for E o-
differential binding s o
analysis e

» More replicates is often ) 000 2000 3000 4000
preferable to greater Peak rank
depth

» Better to sequence high- SOX2 SOX2

: Replicate 1 Replicate 2
quality sample at lower 4605) 038D

depth than low-quality 5090
sample to higher depth



Experimental design
-

Biological samples/Library preparation

Seqguence reads

Quality control FASTQC

Alignment to Genome BWA, Bowtie2

Filter duplicates, multi mappers, blacklist

Peak Calling

ChlP-seqg workflow
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» Explore duplication rates
» Don’t be surprised to see

= Raw sequence QC
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Quality control with atacqv

PLOTS TABLES EXPERIMENTS HELP

Samples (13) SHOWALL HIDEALL SEARCH PLOT ITEMS: |28

SRS438193 SRS438194 SRS438195 " SRS438196 SRS438197 SRS438198 SRS438199 SRS438200 SRS438201 SRS438202
SRS438203 SRS438204 B SRS438205

HQAA fragment length distribution (FLD) Distance from reference FLD

o
v
3 E
S 2
bl o
— -~
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500 600 900 -0. -0.2 0.1 0.0 0.1 0.2

Fragment length (bp) Distance from reference fragment length distribution

SMOOTHING: [Fld BP Y AXIS SCALE: REFERENCE: 2N High-quality autosomal (%) v

TSS enrichment Cumulative fraction of HQAA in peaks
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0.3

0.2
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0.0
200 { 0 10 20 30 40 50

Enrichment
Cumulative fraction of
high-quality autosomal
reads

Position relative to TSS Peak percentile




Understanding strand cross-correlation

= pbinding site
---- = gize selected DNA fragment




Understanding strand cross-correlation

ChlP-seq fragments are sequenced from the 5’ end




Understanding strand cross-correlation

Alignment generates a bimodal pattern on the plus and minus strands around
binding sites

d

< >

Peak calling algorithms use this pattern to
estimate the relative strand shift




Modeling noise to detect real peaks

» Noise is not uniform (chromatin conformation, local
biases, mappability)

» Input data is mandatory for a reliable estimation of
noise (even though some tools don't require it)

Background noise

e —— o~ T




Peak detection

Many algorithms model the number
of reads from a genomic region/
window using a Poisson distribution

One parameter model for estimating
the expected number of reads in the
window

Often more variance in real data
than assumed by the Poisson
(overdispersion)

MACS (model-based analysis of
ChIP-Seq) uses multiple Poisson
distributions to model the local
background noise within each region
from the input data

P(k events in interval) = e —

where

« A is the average number of events per interval

» eisthe number 2.71828... (Euler's number) the base of the natural logarithms
« ktakes values 0, 1, 2, ...

e kl=kx(k-1)x(k-2)x...x2x1is the factorial of .

0.40 —
0.35} 1 o A=1
0.30} \ * A=4
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http://en.wikipedia.org/wiki/Poisson distribution



https://en.wikipedia.org/wiki/Poisson_distribution

Peak callers

« Variability in number MACS
SISSRSL
of peaks called

_“

spp mic
PP _

sppwiden

———

= Tend to agree on the
strongest signals

QUE ST i s

Hpeak b

ERANGE b GABP

MCPF “ FoxAt

- “ NRSF
Sole-Search

—

Peak calling program

CisGenome...

—

Core peaks—._ |

—

0 5 10 15 20

Number of Peaks (thousands)

Wilbanks & Facciotti (2010). PLoS ONE.



How to choose one

Widely used
Actively maintained and updated

Default settings are a good start but know
vour parameters for your peak caller

Be critical! Visually inspect your data (IGV)



CUT&RUN peak calling

» Consider using SEACR
(Henikoff Lab)

» Useful for identifying
large domains
(H3K27me3)

IgG

L] = Contiguous signal blocks

= Fewer false positive calls

IgG overiap Meets threshold

(filtered out)
Fails threshold <

LJ = Contiguous signal blocks
meeting threshold

Target

IgG

Meers, et al (2019). Epigenetics & Chromatin 12, 42 (2019).
https://doi.org/10.1186/s13072-019-0287-4



Downstream analysis

» Detecting differential enrichment across samples

» Steinhauser et al, Brief Bioinform. (2016)

Sharp ChlP-seq signal: FoxA1
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Broad ChlP-seq signal: H3K36me3
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Figure 4. Proportion of true and false positives for each tool on the simulated FoxA1 data set (A, B)

and H3K36bme3 data (C, D)




Sharp or Broad
ChIP Enrichment?

Biological < Sharp
Replicates?
Predefined < YES NO > Predefined
Region Set? Region Set?
YES NO YES NO
\4 \4 \4 Y
) g’glgﬁgmp - diffReps-nb - MAnorm - diffReps-cs/-gt
B - MultiGPS - unique Peaks - Homer
- DiffBind - PePr - QChlIPat -
- MMDiff - MACS2 bdgdiff
- ODIN-bin
- ODIN-pois
- SICER

Broad y| Biological
Replicates?
Predefined < YES NO > Predefined
Region Set? Region Set?
YES NO YES NO
\4 \4 \4 \4
- diffReps
- ChIPComp - PePr : L“?n'?nl?;nlleaks - Homer
- DiffBind - diffReps-nb 0 Pat - MACS2 bdgdiff
- ODIN-pois/-bin
- RSEG
- SICER

Figure 7. Decision tree indicating the proper choice of tool depending on the data set: shape
of the signal (sharp peaks or broad enrichments), presence of replicates and presence of an
external set of regions of interest [Steinhauser, et al, 2016].




Downstream analysis

Read Count Frequency
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https://deeptools.readthedocs.io/en/latest/

Downstream analysis

= Annotation of peaks - genomic context
» ChIPseeker, Homer
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Downstream analysis

» Functional enrichment analysis
» ChIPseeker, GREAT, Homer

Biological Process Enrichment
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http://great.stanford.edu/public/html/

Downstream analysis

= Motif discovery
= MEME suite, Homer

l - Discriminative Regular Expression Motif Elicitation

o

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.nbcr.net.

If you use DREME in your research please cite the following paper:
Timothy L. Bailey, "DREME: Motif discovery in transcription factor ChIP-seq data", Bioinformatics, 27(12):1653-1659, 2011. [full text]
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Downstream analysis

» Integrative analysis of
RNA-seq and ChIP-seq Differentially  TE_pound

: expressed
= Which of the regulated —— genes

genes are direct targets
of the TF?

» [Is the TF an activator,
repressor, or both?

» Does the TF have
different binding partners
depending on the
direction of regulation?

Download Installation

Summary

Binding and Exprassion larget Analysis (BEIA) is a software package that integrates ChlF-seq of transcription factors o¢ chromatin
regulators with differential gene expression data to infer direct target genes. BETA has three functions: (1) tc oredict whether the factor
has activating or repressive function; (2) to infer the factor’s target genes; ard (3) to identi'y the motif of the factor and its collaborators
which might modulate the factor’s activaling or repressive function. Hers we describe the implementaten and ‘eetures of BETA to



ATAC-seq data analysis

Peak calling using MACS2
with PE settings and without
model building

Remove mitochondrial reads
Shift alignments

Separate nucleosome free
regions (NFR) from
nucleosome containing
regions

Normalized read density x 10 :

15

10

Norm. read density
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Fragment length (bp)

Ou et al, Bioconductor 2018




Advances in technology

» 10X Single cell ATAC-seq
» 10X Multiome (sc ATAC-seq + RNA-seq)
» Spatial epigenomics (AtlasXomics)

Adding Spatial Context to Your Research

Bulk ATAC-seq reveals distal Cell analysis reveals unique Spatial analysis locates
element population unique population

Browser track UMAP




Inputs for machine learning

ATAC-seq
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https://www.nature.com/articles/s43588-021-00038-7



https://www.nature.com/articles/s43588-021-00038-7

Summary

A review of chromatin structure

Basics of the ChIP-seq, CUT&RUN and ATAC-
seq protocols

Better understanding of how to design
epigenomic experiments

How to analyze the data

What to look for in a good ChIP data set

Emerging methods to improve signals and
characterize regulatory domains



ASK US questions

shosui@hsph.harvard.edu

bioinformatics.sph.harvard.edu
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