Sequencing Technologies

Illumina Sequencing

FTTAATGATACGGCGACCACCGAGAUCTACAC-3

TTTCAAGCAGAAGACGGCATACGAG0x0AT-3'

Illumina: flow cell

http://training.bioinformatics.ucdavis.edu/docs/2014/09/september-2014-workshop/Monday_JF_HTS_lecture.html

Illumina: cluster generation

http://training.bioinformatics.ucdavis.edu/docs/2014/09/september-2014-workshop/Monday_JF_HTS_lecture.html

Newly synthesized strand

Illumina: cluster generation

dsDNA is denatured, original DNA washed away. Newly synthesized strand is covalently bound to flow cell.

Illumina: cluster generation

Illumina: bridge amplification

Illumina: bridge amplification

Illumina: bridge amplification

Illumina: bridge amplification

Illumina: cluster generation

Illumina: sequencing by synthesis

http://www.slideshare.net/CRS4/chris-jones-crs4-staff-meeting-24032010

Illumina: base calling

Number of clusters ~= Number of reads Number of sequencing cycles ~= Length of reads

Illumina: paired-end sequencing

Benchtop

Illumina: Sequencing Platforms

https://www.illumina.com/systems/sequencing-platforms.html 18

Production-Scale

iSeq 100 System

Benchtop

Run Time	9–17.5 hours	4–24 hours	4–55 hours	12–30 hours
Maximum Output	1.2 Gb	7.5 Gb	15 Gb	120 Gb
Maximum Reads Per Run	4 million	25 million	25 million [†]	400 million
Maximum Read Length	2 × 150 bp	2 × 150 bp	2 × 300 bp	2 × 150 bp

NextSeq Series O

Production-Scale

Run Time	12–30 hours
Maximum Output	120 Gb
Maximum Reads Per Run	400 million
Maximum Read Length	2 × 150 bp

MiniSeq System

NextSeq Series O

HiSeq Series O

HiSeq X Series[‡]

NovaSeq 6000 System

< 1–3.5 days (HiSeq 3000/HiSeq 4000) 7 hours–6 days (HiSeq 2500)	< 3 days	16–36 hours (Dual S2 flow cells) 44 hours (Dual S2 flow cells)
1500 Gb	1800 Gb	6000 Gb
5 billion	6 billion	20 billion
2 × 150 bp	2 × 150 bp	2 × 150 bp

Pacific Biosciences: <u>http://www.pacb.com/</u> Oxford Nanopore (MinION): <u>https://nanoporetech.com/</u> **10X Genomics:** <u>https://www.10xgenomics.com/</u>

Other Sequencing Platforms

	Advantages
<u>Pacific</u> <u>Biosciences</u>	Iso-Seq protocol for transcripts up to 10Kb, high base calling accuracy
<u>Oxford</u> <u>Nanopore</u>	Accurate quantitative data for short transcripts (< 700bp), portable, high yield
10X Genomics	Low cost (integrated with short-read technology), barcoding for accurate isoform detection, low error rates

Transcriptomics with long read technologies

Disadvantages

High cost, large machines

High errors rate affects assembling de novo transcripts, higher amount of cDNA input

Extra preparation step (barcode), extra computational step

These materials have been developed by members of the teaching team at the <u>Harvard Chan Bioinformatics Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons Attribution license (CC BY 4.0)</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

