Quantifying gene expression

- √ Genome
- ✓ GTF (annotation)?

A simple case of string matching

A simple case of string matching?

Non-comprehensive list of challenges

- Large, incomplete and repetitive genomes OR transcriptomes with overlapping transcripts (isoforms)
- Short reads: 50-150 bp
 - Non-unique alignment
 - Sensitive to non-exact matching (variants, sequencing errors)
- Massive number of short reads
- Small insert size: 200-500 bp libraries
- Compute capacity for efficient mapping

Building an index

- Having an index of the reference sequence provides an efficient way to search
- Once index is built, it can be queried any number of times
- Every genome or transcriptome build requires a new index for the specific tool in question.

Commonly used indexing methods

- Hash-based (Salmon, Kallisto)
- Suffix arrays (Salmon, STAR)
- Burrows-Wheeler Transform (BWA, Bowtie2)

Genome versions matter

- Ensembl, UCSC and NCBI all often use the same genome assemblies or builds (e.g. GrCh38 == hg38)
- Make sure that the annotation file (GTF) is exactly matched with the genome file (fasta)
 - Same genome version
 - Same source (e.g. both from FlyBase)

- √ Genome FASTA
- √ GTF (annotation)

Alignment to genome

- Is it important that the genome index is created with awareness of known splice junctions?
- Don't use default parameters; read the manual and ask questions about parameters
- Parameter sweeps may be needed if you are working on a non-model organism

BAM alignment files

- Binary version of SAM alignment format files
- Recommended over SAM files for saving alignments
- Contain information on a per-read basis:
 - -- Coordinates of alignment, including strand
 - -- Mismatches
 - -- Mapping information (unique?, properly paired?, etc.)
 - -- Quality of mapping (tool-specific scoring systems)

More information about SAM/BAM

QC on BAM files

Evaluating the quality of the aligned data can give important information about the quality of the library:

- -- Total % of reads aligning to the genome? % of uniquely mapping reads? % of properly paired PE reads?
- -- Genomic origin of reads (exonic, intronic, intergenic)
- -- Quantity of rRNA
- -- Transcript coverage and 5'-3' bias

Samples should have fairly consistent percentages.

QC on BAM files

Gather QC metrics using:

- Log files from alignment run
- Qualimap
- RNASeQC (paper)

More information about alignment QC

Quantification from BAM files

- htseq-count
- <u>featureCounts</u>

Quantification from BAM files

- htseq-count and featureCounts
 - -- Strandedness
 - -- Stringency
- Results in a gene-level counts matrix (raw)
- Output ready for DGE analysis using tools like <u>DESeq2</u> or <u>EdgeR</u>

✓ Transcriptome FASTA

More efficient quantification approaches

- Approaches that avoid base-to-base alignment
- <u>Kallisto</u> (quasi-aligner), <u>Sailfish</u> (kmer-based), <u>Salmon</u> (quasi-aligner), RSEM
- Faster, more efficient (~ >20x faster than alignment-based)
- Improved accuracy for transcript-level quantification
- Improvements in accuracy for gene-level quantification**

**doi: <u>10.12688/f1000research.7563.2</u>

More efficient quantification approaches

- Results in a matrix of abundance estimates (not raw) at the isoform-level
- Abundance estimates can be used for differential isoform expression using <u>sleuth</u> (designed for Kallisto output)
- Gene-level counts can be calculated using tximport
 - -- ready for DGE analysis using tools like <u>DESeq2</u> or <u>EdgeR</u>

These materials have been developed by members of the teaching team at the <u>Harvard Chan Bioinformatics Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons Attribution license (CC BY 4.0)</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

